Skip to main content
Log in

Molecular Analysis of the Gibberellin Signaling Pathway Genes in Cultivated Rye (Secale cereale L.)

  • RESEARCH ARTICLE
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

Gibberellin signaling pathway genes encoding the DELLA protein and gibberellin receptor GID1 were sequenced in several varieties (Alpha, Valdai, Orlovskaya 9, Pracha) and one line of rye (EM-1) using next generation methods. The revealed multiple alleles of these genes differ mainly in single-nucleotide polymorphisms and less frequently in insertions and deletions. Most of the detected mutations turned out to be synonymous or located in the noncoding regions of the genes. Changes in the amino acid sequences of proteins associated with other mutations are probably functionally neutral. Mutations similar to wheat reduced-height gibberellin-insensitive alleles were not detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Schlegel, R.H.J., Rye: Genetics, Breeding, and Cultivation, CRC Press, 2013.

    Book  Google Scholar 

  2. Davière, J.-M. and Achard, P., Gibberellin signaling in plants, Development, 2013, vol. 140, no. 6, pp. 1147–1151.

    Article  PubMed  Google Scholar 

  3. Peng, J., Richards, D.E., Hartley, N.M., Murphy, G.P., Devos, K.M., Flintham, J.E., Beales, J., Fish, L.J., Worland, A.J., Pelica, F., Sudhakar, D., Christou, P., Snape, J.W., Gale, M.D., and Harberd, N.P., “Green revolution” genes encode mutant gibberellin response modulators, Nature, 1999, vol. 400, no. 6741, pp. 256–261.

    Article  CAS  PubMed  Google Scholar 

  4. Pearce, S., Saville, R., Vaughan, S.P., Chandler, P.M., Wilhelm, E.P., Sparks, C.A., Al-Kaff, N., Korolev, A., Boulton, M.I., Phillips, A.L., Hedden, P., Nicholson, P., and Thomas, S.G., Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat, Plant Physiol., 2011, vol. 157, no. 4, pp. 1820–1831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yoshida, H., Hirano, K., Sato, T., Mitsuda, N., Nomoto, M., Maeo, K., Koketsu, E., Mitani, R., Kawamura, M., Ishiguro, S., Tada, Y., Ohme-Takagi, M., Matsuoka, M., and Ueguchi-Tanaka, M., DELLA protein functions as a transcriptional activator through the DNA binding of the indeterminate domain family proteins, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, no. 21, pp. 7861–7866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li, S., Tian, Y., Wu, K., Ye, Y., Yu, J., Zhang, J., Liu, Q., Hu, M., Li, H., Tong, Y., Harberd, N.P., and Fu, X., Modulating plant growth-metabolism coordination for sustainable agriculture, Nature, 2018, vol. 560, no. 7720, pp. 595–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hirsch, S. and Oldroyd, G.E., GRAS-domain transcription factors that regulate plant development, Plant Signal Behav., 2009, vol. 4, no. 8, pp. 698–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ueguchi-Tanaka, M., Nakajima, M., Katoh, E., Ohmiya, H., Asano, K., Saji, S., Hongyu, X., Ashikari, M., Kitano, H., Yamaguchi, I., and Matsuoka, M., Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin, Plant Cell, 2007, vol. 19, no. 7, pp. 2140–2155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fu, X., Richards, D.E., Ait-Ali, T., Hynes, L.W., Ougham, H., Peng, J., and Harberd, N.P., Gibberellin-mediated proteasome-dependent degradation of the barley DELLA protein SLN1 repressor, Plant Cell, 2002, vol. 14, no. 12, pp. 3191–3200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Börner, A., Plaschke, J., Korzun, V., and Worland, A.J., The relationships between the dwarfing genes of wheat and rye, Euphytica, 1996, vol. 89, no. 1, pp. 69–75.

    Article  Google Scholar 

  11. Braun, E.-M., Tsvetkova, N., Rotter, B., Siekmann, D., Schwefel, K., Krezdorn, N., Plieske, J., Winter, P., Melz, G., Voylokov, A.V., and Hackauf, B., Gene expression profiling and fine mapping identifies a gibberellin 2-oxidase gene co-segregating with the dominant dwarfing gene Ddw1 in rye (Secale cereale L.), Front. Plant Sci., 2019, vol. 10, p. 857.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kantarek, Z., Masojć, P., Bienias, A., and Milczarski, P., Identification of a novel, dominant dwarfing gene (Ddw4) and its effect on morphological traits of rye, PLoS ONE, 2018, vol. 13.

  13. Grądzielewska, A., Milczarski, P., Molik, K., and Pawłowska, E., Identification and mapping of a new recessive dwarfing gene dw9 on the 6RL rye chromosome and its phenotypic effects, PLOS ONE, 2020, vol. 15, no. 3.

  14. Doyle, P.J., DNA protocols for plants, in Molecular Techniques in Taxonomy, Hewitt, G.M., Johnston, A.W.B., Young, J.P.W., Eds., Berlin–Heidelberg: Springer, 1991, pp. 283–293.

    Google Scholar 

  15. Bauer, E., Schmutzer, T., Barilar, I., et al., Towards a whole-genome sequence for rye (Secale cereale L.), Plant J., 2017, vol. 89, no. 5, pp. 853–869.

    Article  CAS  PubMed  Google Scholar 

  16. IPK Rye blast server. https://webblast.ipk-gatersleben.de/ryeselect/. Accessed June 27, 2020.

  17. Razumova, O.V., Bazhenov, M.S., Nikitina, E.A., Nazarova, L.A., Romanov, D.V., Chernook, A.G., Sokolov, P.A., Kuznetsova, V.M., Semenov, O.G., Karlov, G.I., Kharchenko, P.N., and Divashuk, M.G., Molecular analysis of gibberellin receptor gene GID1 in Dasypyrum villosum and development of DNA marker for its identification, RUDN J. Agron. Anim. Ind., 2020, vol. 15, no. 1, pp. 62–85.

    Google Scholar 

  18. Lischer, H.E.L. and Shimizu, K.K., Reference-guided de novo assembly approach improves genome reconstruction for related species, BMC Bioinf., 2017, vol. 18, no. 1, p. 474.

    Article  Google Scholar 

  19. Bankevich, A., Nurk, S., Antipov, D., et al., SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing, J. Comput. Biol., 2012, vol. 19, no. 5, pp. 455–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang, X. and Madan, A., CAP3: A DNA sequence assembly program, Genome Res., 1999, vol. 9, no. 9, pp. 868–877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zaharia, M., Bolosky, W.J., Curtis, K., Fox, A., Patterson, D., Shenker, S., Stoica, I., Karp, R.M., and Sittler, T., Faster and more accurate sequence alignment with SNAP, 2011. arXiv:1111.5572 [cs, q-bio]

  22. Garrison, E. and Marth, G., Haplotype-based variant detection from short-read sequencing, 2012. arXiv:1207.3907 [q-bio]

  23. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., and 1000 Genome Project Data Processing Subgroup, The sequence alignment/map format and SAMtools, Bioinformatics, 2009, vol. 25, no. 16, pp. 2078–2079.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nicholas, K.B. and Nikolas, H.B., Jr. GeneDoc: A Tool for Editing and Annotating Multiple Sequence Alignments, Pittsburgh Supercomputing Center’s National Resource for Biomedical Supercomputing, 1997.

    Google Scholar 

  25. Choi, Y. and Chan, A.P., PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels, Bioinformatics, 2015, vol. 31, no. 16, pp. 2745–2747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. NCBI Conserved Domain Search. https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi. Accessed June 29, 2020.

Download references

ACKNOWLEDGMENTS

We thank Dr. I.G. Loskutov, Doctor of Science, Head of the Department of Genetic Resources of Oat, Rye, and Barley of the Vavilov All-Russia Institute for Plant Genetic Resources; Dr. V.D. Kobylyansky, Doctor of Science, Honorary Professor of Vavilov All-Russia Institute for Plant Genetic Resources; and Dr. V.S. Rubetz, Doctor of Science, Professor of the Department of Genetics, Plant Breeding, and Seed Farming of the Russian State Agrarian University–Moscow Timiryazev Agricultural Academy for kindly providing plant material.

Funding

This work was supported by the Russian Scientific Foundation, project no. 17-76-20023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Divashuk.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This study does not contain any experiments carried out with animals or people as objects.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Additional information

Translated by Mikhail Bibov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazhenov, M.S., Chernook, A.G. & Divashuk, M.G. Molecular Analysis of the Gibberellin Signaling Pathway Genes in Cultivated Rye (Secale cereale L.). Moscow Univ. Biol.Sci. Bull. 75, 125–129 (2020). https://doi.org/10.3103/S0096392520030025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392520030025

Keywords:

Navigation