Skip to main content
Log in

The Influence of Changes in the Structure of Hydrogen Bonds of Water on the Electrophysical Properties of Matrix–Water Systems in Stepwise Heating

  • CONDENSED MATTER PHYSICS
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

Bound and free water are present in a wide variety of solids, that is single crystals, polymers, and biopolymers, as well as in media with a hydrogen bond network, as in water (2.7 ± 0.1 Å in length). Some objects behave in the same way as two-component systems (open systems) under external influences and demonstrate an abnormal change in properties at the same temperature as water. This paper presents the results of studies of the temperature behavior of the permittivity, conductivity, and conductivity relaxation time of some hydrophilic polymers, crystallohydrates, and ferroelectrics. The analysis of the results showed that temperature anomalies of the selected properties are observed in the vicinity of 20, 35, 65–75, and near 100°C, which are “special” temperatures for water: in the vicinity of 20, 35, 50°C the destruction of clusters of H2O molecules occurs, while at higher temperatures there is a transition of structural water into free water. It is possible that the discrete nature of the diffuse temperature peaks of the properties is due to the presence of discrete energy levels of protons in the matrix–water system, which during stepwise heating (slow kinetics) leads to a rearrangement or destruction of the OH–O hydrogen bond network, as well as the overfilling of the proton levels in the two-minimum potential, the release of deep traps, and changes in the set of current carriers, their mobility, and the trajectories of transport in bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. N. D. Gavrilova and V. K. Novik, Moscow Univ. Phys. Bull. 66, 260 (2011). doi 10.3103/S0027134911030076

    Article  ADS  Google Scholar 

  2. N. D. Gavrilova and A. A. Davydova, Moscow Univ. Phys. Bull. 68, 143 (2013). doi 10.3103/S0027134913020057

    Article  ADS  Google Scholar 

  3. A. V. Vorobyev, N. D. Gavrilova, and A. M. Lotonov, Moscow Univ. Phys. Bull. 69, 175 (2014). doi 10.3103/S0027134914020131

    Article  ADS  Google Scholar 

  4. A. V. Vorobyev, N. D. Gavrilova, and A. M. Lotonov, Moscow Univ. Phys. Bull. 70, 175 (2015). doi 10.3103/S0027134915010129

    Article  Google Scholar 

  5. N. D. Gavrilova, O. V. Dimitrova, A. M. Lotonov, N. N. Mochenova, and V. K. Novik, Moscow Univ. Phys. Bull. 63, 127 (2014). doi 10.3103/S0027134908020112

    Article  ADS  Google Scholar 

  6. N. D. Gavrilova, I. A. Malyshkina, E. E. Makhaeva, et al., Ferroelectrics 504, 3 (2016). doi 10.1080/00150193.2016.1238284

    Article  Google Scholar 

  7. N. D. Gavrilova, A. V. Vorob’ev, I. A. Malyshkina, E. E. Makhaeva, and V. K. Novik, Polym. Sci. Ser. A 58, 33 (2016). doi 10.1134/S0965545X16010016

    Article  Google Scholar 

  8. N. D. Gavrilova, A. V. Vorobiev, I. A. Malyshkina, and V. K. Novik, Ferroelectrics 478, 88 (2015). doi 10.1080/00150193.2015.1011493

    Article  Google Scholar 

  9. N. D. Gavrilova, V. K. Novik, and I. A. Malyshkina, J. Non-Cryst. Solids 483, 60 (2018). doi 10.1016/j.jnoncrysol.2017.12.056

    Article  ADS  Google Scholar 

  10. N. D. Gavrilova, I. A. Malyshkina, V. K. Novik, and A. V. Vorobiev, Ferroelectrics 507, 172 (2017). doi 10.1080/00150193.2017.1283934

    Article  Google Scholar 

  11. Water in Polymers, Ed. by S. P. Rowland (American Chemical Society, 1980).

    Google Scholar 

  12. P. A. Rebinder, Surface Phenomena in Disperse Systems (Nauka, Moscow, 1979).

    Google Scholar 

  13. D. Eisenberg and W Kauzmann, The Structure and Properties of Water (Oxford Univ. Press, 1969).

    Google Scholar 

  14. R. Janoshek, E. G. Weidemann, H. Pfeiffer, and G. Zundel, J. Am. Chem. Soc. 94, 2387 (1972). doi 10.1021/ja00762a032

    Article  Google Scholar 

  15. L. A. Shcherbachenko, N. T. Maksimova, E. S. Komarov, L. I. Ruzhnikov, V. A. Karnakov, E. S. Baryshnikov, D. A. Krasnov, A. A. Troshev, D. S. Baryshnikov, and L. I. Ezhova, Tech. Phys. 57, 1417 (2012). doi 10.1134/S1063784212100209

    Article  Google Scholar 

  16. G. R. Ivanitskii, A. A. Deev, and E. P. Khizhnyak, Phys.-Usp. 57, 37 (2014). doi 10.3367/UFNe.0184.201401b.0043

    Article  Google Scholar 

  17. Z. A. Kats, Production of Dried Vegetables, Potatoes, and Fruits (Legkaya i Pishchevaya Promyshlennost’, Moscow, 1984).

    Google Scholar 

  18. G. A. Lushcheikin, Russ. Chem. Rev. 52, 804 (1983). doi 10.1070/RC1983v052n08ABEH002884

    Article  ADS  Google Scholar 

  19. R. Kohlrausch, Pogg. Ann. Phys. Chem. 91, 179 (1854).

    Article  ADS  Google Scholar 

  20. G. Williams and D. C. Watts, Trans. Faraday Soc. 66, 80 (1970). doi 10.1039/TF9706600080

    Article  Google Scholar 

  21. A. C. Lopes, C. M. Costa, R. Sabater i Serra, et al., Solid State Ionics 235, 42 (2013). doi 10.1016/j.ssi.2013.01.013

    Article  Google Scholar 

  22. A. V. Milovanov, J. J. Rasmussen, and K. Rypdal, Phys. Lett. A 372, 2148 (2008). doi doi 10.1016/j.physleta.2007.11.025

    Article  ADS  Google Scholar 

  23. A. K. Jonscher, Dielectric Relaxation in Solids (Dielectric Press, Chelsea, 1983).

    Google Scholar 

  24. I. D. Nabitovich, N. A. Tsal’, and N. N. Romanyuk, Kristallografiya, No. 4, 985 (1989).

  25. A. K. Kukushkin and S. A. Kuznetsova, Russ. J. Gen. Chem. 77, 2040 (2007).

    Article  Google Scholar 

  26. O. A. Kalmatskaya and V. A. Karavev, Biophysics 60, 843 (2015). doi 10.1134/S0006350915050085

    Article  Google Scholar 

  27. O. A. Kalmatskaya, I. P. Levykina, S. V. Patsaeva, V. A. Karavaev, and V. I. Yuzhakov, Moscow Univ. Phys. Bull. 68, 466 (2013). doi 10.3103/S0027134913060076

    Article  ADS  Google Scholar 

  28. L. A. Shcherbachenko, V. S. Borisov, N. T. Maksimova, E. S. Baryshnikov, V. A. Karnakov, S. D. Mar-chuk, Ya. V. Ezhova, and L. I. Ruzhnikov, Tech. Phys. 54, 1372 (2009). doi 10.1134/S1063784209090199

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. D. Gavrilova or I. A. Malyshkina.

Additional information

Translated by K. Gumerov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilova, N.D., Malyshkina, I.A. The Influence of Changes in the Structure of Hydrogen Bonds of Water on the Electrophysical Properties of Matrix–Water Systems in Stepwise Heating. Moscow Univ. Phys. 73, 651–658 (2018). https://doi.org/10.3103/S0027134918060127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134918060127

Keywords:

Navigation