Skip to main content
Log in

Investigation of the unsteady creep of reinforced plates of nonlinearly inherited materials, taking into account the weakened resistance by transverse shear

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The problem of inelastic bending deformation of plates is formulated using the idea of the method of time steps in rectangular Cartesian and cylindrical coordinate frames based on two versions of the Tymoshenko theory and taking into account plates weakened resistance to transverse shears during plane-cross reinforcement and. The mechanical behavior of the materials of the components of the composition is described by the nonlinear-hereditary Rabotnov’s creep theory. The bending behavior under creep conditions of ring plates made of D16T aluminum alloy and axisymmetrically reinforced along boron and spiral-circular trajectories by boron fibers is studied. It is shown that under short-term loading the classical theory is quite acceptable for calculating the mechanical behavior of such composite structures. Under prolonged loading in the creep process, transverse shear deformations actively and rapidly develop in the binder material of the plate. Therefore, taking into account the weakened resistance to transverse shear after calculating the creep of thin-walled reinforced structural elements is needed. The compliance of the reinforced plates under long-term loading predicted by the classical theory and the first version of the Tymoshenko’s theory is significantly less than that determined by the second version of the Tymoshenko’s theory. Therefore it is recommended to use the second version of the Tymoshenko’s theory for adequate calculations of the creep of the reinforced plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yu. N. Rabotnov, Creep Problems in Structural Members (Nauka, Moscow, 1966; North-Holland, Amsterdam, 1969) [in Russian].

    MATH  Google Scholar 

  2. L. M. Kachanov, The Theory of Creep (Fizmatgiz, Moscow, 1960; Nat. Lending Lib., 1967) [in Russian].

    Google Scholar 

  3. L. A. Golotina, L. L. Kozhevnikova, and T. B. Koshkina, “Numerical Simulation of the Rheological Properties of Granular Composites by Using a Structural Approach,” Mekh. Komp. Mat. 44(6), 895–906 (2008) [Mech. Comp. Mat. (engl. Transl.) 2008. 44 (6), 633–640 (2008)].

    Google Scholar 

  4. V. E. Apet’yan and D. L. Bykov, “Determining Nonlinear Viscoelastic Characteristics of Filled Polymer Materials,” Kosm. Raket. 3(28), 202–214 (2002).

    Google Scholar 

  5. V. P. Golub, Yu. M. Kobzar’ and P. V. Fernati, “Nonlinear Creep of Unidirectional Fibrous Composites Tensioned Along the Reinforcement,” Prik. Mekh. 43(5), 20–34 (2007) [Int. App. Mech. (Engl. Transl.) 43 (5), 491–503 (2007)]

    MATH  Google Scholar 

  6. R. G. Kulikov and N. A. Trufanov, “Application of Iteration Method for Solving the Problem of Deformation of Unidirectional Composites with Nonlinear Viscoelastic Matrix,” Vych. Mekh. Spl. Sred 4(2), 61–71 (2011).

    Google Scholar 

  7. A. F. Kregers and G. A. Teters, Mech. Comp. Mater., No. 4, 617–624 (1979).

  8. A. F. Kregers and G.A. Teters, “Structural model of the deformation of three-dimensionally reinforced anisotropic composites,” Mekh. Kompoz. Mater., No. 1, 14–22 (1982).

  9. A. P. Yankovskii, “Modelling of Mechanical Behaviour of the is Space-Reinforced Composites from is Nonlinear-Hereditary Materials,” Konst. Comp. Mat., No 2, 12–25 (2012).

  10. Yu. N. Rabotnov, “Design of Components of Machines in Creep Report of the Academy of Sciences,” Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, No. 6, 789–800 (1948).

  11. Yu. N. Rabotnov, “Some Questions in the Creep Theory,” Vestn. MGU, No. 10, 81–91 (1948).

  12. Yu. N. Rabotnov, Elements of the Hereditary Mechanics of Solids (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  13. A. F. Nikitenko, Creeping and Long-Term Strength of Metallic Materials (Izd-vo Inst. Gidrodin. SO RAN, Novosibirsk, 1997) [in Russian].

    Google Scholar 

  14. A. P. Yankovskii, “Analysis of Creep of Reinforced Beams-Wall from Nonlinear-Hereditary Materials within of the Second Variant of Tymoshenko Theory,” Mekh. Komp. Mat. Consr. 20(3) 469–489 (2014).

    Google Scholar 

  15. A. V. Mishchenko and Yu. V. Nemirovskii, “Creep of the Homogeneous and Layered Beams on the Basis of a Three-Component Model,” Izv. Vyssh. Uchebn. Zaved., Stroit., No. 5, 16тАУ24 (2009).

  16. Yu. V. Nemirovskii and B. S. Reznikov, Strength of Structural Elements Made of Composite Materials (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  17. A. N. Andreev and Y. V. Nemirovskii, Multilayered Anisotropic Shells and Plates. Bending, Stability, and Vibrations (Nauka, Novosibirsk, 2001) [in Russian].

    Google Scholar 

  18. V. V. Karpov, Strength and Stability of Reinforced Shells of Revolution Vol. 1: Models and Algorithms for the Strength and Stability Analyses of Reinforced Shells of Revolution (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  19. V.V. Karpov, Strength and Stability of Reinforced Shells of Revolution Vol.2: Computational Experiment under Static Mechanical Forcing (Fizmatlit, Moscow, 2011) [in Russian].

    Google Scholar 

  20. A. A Ilyushin, Selected collected Works Vol. 3: Theory of thermoviscoelasticity (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  21. R. M. Goldhoff, “The Application of RabotnovтАЩs Creep Parameter,” Proc. ASTM. 61 (1961).

  22. F. H. Turner and K. E. Blomquist, “A Study of the Applicability of RabotnovтАЩs Creep Parameter for Aluminium Alloy,” JAS 23(12) 1121–1122 (1956).

    Google Scholar 

  23. V. P. Radchenko and Yu. A. Eremin, Rheological Deformation and Fracture of Materials and Structural Members (Mashinostroenie, Moscow, 2004) [in Russian].

    Google Scholar 

  24. G. M. Khazhinskii, Models of Deformation and Destruction of Metals (Nauchnyi Mir, Moscow, 2011) [in Russian].

    Google Scholar 

  25. Yu. V. Nemirovskii and A. P. Yankovskii, “Modeling of Unsteady Elastic–Viscous Creep of a Cross-Reinforced Metal Composite Layer,” in Problems of the Mechanics of Solids: on the 90th Anniversary of the Academician of the NAS of Armenia S.A. Hambartsumyan. Proceedings (Institute of Mechanics of the NAS RA, Yerevan, 2011) pp. 230–239 [in Russian].

    Google Scholar 

  26. A. P. Yankovskii, “Modeling the Creep of Rib-Reinforced Composite Media Made of Nonlinear Hereditary Phase Materials. 1. Structural Model,” Mech. Comp. Mat. 51(1) 3–26 (2015).

    Article  MathSciNet  Google Scholar 

  27. V.V. Vasil’ev, Mechanics of Structures Made of Composite Materials (Mashinostroenie, Moscow, 1988) [in Russian].

    Google Scholar 

  28. V. O. Kaledin, S. M. Aul’chenko, A. B. Mitkevich, E. B. Reshetnikova, et al., Modeling Statics and Dynamics of Shell Structures of Composite Materials (Fizmatlit, Moscow, 2014) [in Russian].

    Google Scholar 

  29. A. K. Malmeister, V. P. Tamuzh, and G. A. Teters, Strength of Polymeric and Composite Materials (Zinatne, Riga, 1980) [in Russian].

    Google Scholar 

  30. A. P. Yankovskii “Elastoplastic Deformation of Flexible Reinforced Plates with a Reduced Shear Strength,” Prik. Math. Mekh. 77(6), 853–876 (2013) [J. App. Math. Mech. (Engl. Transl.) 77 (6), 613–628 (2013)].

    MathSciNet  MATH  Google Scholar 

  31. G. Hall and J. M. Watt, Modern Numerical Methods for Ordinary Differential Equations (Clarendon Press, Oxford, 1976; Mir, Moscow, 1979).

    MATH  Google Scholar 

  32. D. M. Karpinos (Ed.), Composite Materials (Naukova Dumka, Kiev, 1985) [in Russian].

    Google Scholar 

  33. N. V. Banichuk and V. V. Kobelev, and R. B. Rikards, Optimization of Structural Elements Made of Composite Materials (Mashinostroenie, Moscow, 1988) [in Russian].

    Google Scholar 

  34. A. P. Yankovskii, “Modeling the Creep of Rib-Reinforced Composite Media Made of Nonlinear Hereditary Phase Materials. 1. A Model Problem,” Mech. Comp. Mat. 51(2), 241–252 (2015).

    Article  Google Scholar 

  35. A. P. Yankovskii, “Steady-State Creep of Bent Reinforced Metal-Composite Plates with Consideration of their Reduced Resistance to Transverse Shear,” Prik. Mekh. Teor. Phiz. 55(4), 174–183 (2014) [J. App. Mech. Tech. Phys. (Engl. Transl.) 55 (4) 701–708 (2014)].

    MATH  Google Scholar 

  36. S. A. Ambartsumyan, Theory of Anisotropic Plates (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Yankovskii.

Additional information

Russian Text © Author(s), 2019, published in Izvestiya Akademii Nauk, Mekhanika Tverdogo Tela, 2019, No. 2, pp. 3–28.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yankovskii, A.P. Investigation of the unsteady creep of reinforced plates of nonlinearly inherited materials, taking into account the weakened resistance by transverse shear. Mech. Solids 54, 365–383 (2019). https://doi.org/10.3103/S0025654419020018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654419020018

Keywords

Navigation