Skip to main content
Log in

Numerical simulation of storm waves near the northeastern coast of the Black Sea

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The results ofnumerical simulation of storm waves near the northeastern coast ofthe Black Sea using different wind forcing (CFSR reanalysis, GFS forecast, and WRF reanalysis and forecast) are presented. The wave modeling is based on the SWAN spectral wave model and the high-resolution unstructured grid for the Tsemes Bay. The quality estimates of wave simulation results for various wind forcing are provided by comparing the model results with the instrumental data on wind waves in the Tsemes Bay. It is shown that the forecast of the maximum wave height for some storms using the WRF wind forcing is more accurate than that based on the GFS forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. K. Abuzyarov, I. O. Dumanskaya, and E. S. Nesterov, Operational Oceanographic Services, Ed. by E. S. Nesterov (Moscow, 2009) [in Russian].

  2. A. V. Bukhanovskii, L. I. Lopatukhin, E. S. Chernyshova, and A. M. Kolesov, “The Storm on the Black Sea on November 11 and the Statistics of Extreme Sea Storms,” Izv. RGO, No. 2, 141 (2009) [in Russian].

    Google Scholar 

  3. A. A. Zelen’ko, B. S. Strukov, Yu. D. Resnyanskii, and S. L. Martynov, “The System of Wind Wave Forecasting in the World Ocean and Russian Seas,” Trudy GOIN, No. 215 (2014) [in Russian].

    Google Scholar 

  4. D. V. Ivonin, S. A. Myslenkov, P. V. Chernyshov, et al., “The Syslem of Monltoring of Wind Waves in the Coastal Area of the Black Sea Using Radars, Direct Measurements, and Modeling: The First Results,” Problemy Regional’noi Ekologii, No. 4 (2013) [in Russian].

    Google Scholar 

  5. I. M. Kabatchenko and M. V. Reznikov, “Sea Wind Wave Modeling: Methods and Aspects of Applications,” Trudy GOIN, No. 213 (2011) [in Russian].

    Google Scholar 

  6. L. I. Lopatukhin, A. V. Bukhanovskii, S. V. Ivanov, and E. S. Chernyshova, Reference Data on Wind and Waves in the Baltic, North, Black, Azov, and Mediterranean Seas (Russian Marltime Reglster of Shipping, St. Petersburg, 2006) [in Russian].

    Google Scholar 

  7. S. A. Myslenkov and V. S. Arkhipkin, “The Wind Wave Analysis in the Tsemes Bay of the Black Sea Using the SWAN Model,” Trudy Gidromettsentra Rossii, No. 350 (2013) [in Russian].

    Google Scholar 

  8. S. A. Myslenkov and V. S. Arkhipkin, “The System of Regional Forecasting of Wind Waves in the Tsemes Bay of the Black Sea,” Trudy GOIN, No. 215 (2014) [in Russian].

    Google Scholar 

  9. The Regime, Diagnosis, and Forecasting of Wind Waves in Oceans and Seas: Scientific-methodical Manual, Federal Service for Hydrometeorology and Environmenfal Moniforing, Ed. by E. S. Nesterov (Issled. Gruppa “Sotsial’nye Nauki,” Moscow, 2013) [in Russian].

  10. P. A. Toropov, S. A. Myslenkov, and T. E. Samsonov, “Numerical Simulation of Novorossiysk Bora and Related Hazardous Wind Waves,” Vestnik Moskovskogo Un-ta, Ser. 5, Geografiya, No. 2 (2013) [in Russian].

    Google Scholar 

  11. P. A. Toropov and A. A. Shestakova, “Quality Assessment of Novorossiysk Bora Simulation by the WRF-ARW Model,” Meteorol. Gidrol., No. 7 (2014) [Russ. Meteorol. Hydrol., No. 7, 39 (2014)].

    Google Scholar 

  12. A. Akpinar, G. Vledder, M. Komurcu, and M. Ozger, “Evaluation of the Numerical Wave Model (SWAN) for Wave Simulation in the Black Sea,” Continental Shelf Res., 50–51 (2012).

    Google Scholar 

  13. V. S. Arkhipkin, F. N. Gippius, K. P. Koltermann, and G. V. Surkova, “Wind waves in the Black Sea: Results of a Hindcast Study,” Nat. Hazards Earth Syst. Sci. Discuss., 14 (2014).

    Google Scholar 

  14. CISL Research Data Archive, http://rda.ucar.edu.

  15. J. C. Dietrich, S. Tanaka, J. J. Westerink, et al., “Performance of the Unstruciured-mesh, SWAN+ADCIRC Model in Computing Hurricane Waves and Surge,” J. Sci. Computing, No. 2, 52 (2012).

    Google Scholar 

  16. Y. Gusdal, A. Carrasco, B. R. Furevik, and O. Saetra, Validation of the Operational Wave Model WAM and SWAN-2009, Report No. 18 (Oceanography, Oslo, 2010).

    Google Scholar 

  17. E. Rusu, “Strategies in Using Numerical Wave Models in Ocean/Coastal Applications,” J. Mar. Sci. Technol., 19 (2011).

    Google Scholar 

  18. E. Rusu, L. Rusu, and C. Guedes Soares, Prediction of Extreme Wave Conditions in the Black Sea with Numerical Models, JCOMM Tech. Report No. 34, WMO-TD, No. 1368 (2006).

    Google Scholar 

  19. SWAN Technical Documentation, SWAN Cycle III Version 40.51A (Univ. Technol., Delft, Netheriands, 2007), No.98.

  20. WRF-ARW Model, http://www.wrf-model.org/index.php.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Myslenkov.

Additional information

Original Russian Text © S.A. Myslenkov, A.A. Shestakova, P.A. Toropov, 2016, published in Meteorologiya i Gidrologiya, 2016, No. 10, pp. 61-71.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myslenkov, S.A., Shestakova, A.A. & Toropov, P.A. Numerical simulation of storm waves near the northeastern coast of the Black Sea. Russ. Meteorol. Hydrol. 41, 706–713 (2016). https://doi.org/10.3103/S106837391610006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106837391610006X

Keywords

Navigation