Skip to main content
Log in

Superconductivity in chiral-asymmetric matter within the (2 + 1)-dimensional four-fermion model

  • Theoretical and Mathematical Physics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The phase structure of chiral-asymmetric matter has been studied within the (2 + 1)-dimensional quantum-field theory with the fermion–antifermion and fermion–fermion (or superconducting) channels of four-fermion interaction. For this purpose, the model takes both the chemical potential of the number of particles μ and the chiral chemical potential μ5 conjugated to the difference between the numbers of right and left fermions into account. A series of phase diagrams was plotted for different chemical potentials. It is shown that the chemical potential μ promotes the appearance of a superconducting phase, while an increase in the chemical potential μ5 suppresses the effect of the chemical potential μ on a system. The results of this study may be of interest for high-energy physics, condensed matter physics and, in particular, graphene physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Ebert and M. K. Volkov, Z. Phys. C 16, 205 (1983).

  2. D. Ebert, H. Reinhardt, and M. K. Volkov, Prog. Part. Nucl. Phys. 33, 1 (1994).

    Article  ADS  Google Scholar 

  3. M. Buballa, Phys. Rep. 407, 205 (2005).

    Article  ADS  Google Scholar 

  4. Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961)

    Article  ADS  Google Scholar 

  5. Y. Nambu and G. Jona-Lasinio, Phys. Rev. 124, 246 (1961).

    Article  ADS  Google Scholar 

  6. D. J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).

    Article  ADS  Google Scholar 

  7. I. V. Krive and A. S. Rozhavskii, Sov. Phys. Usp. 30, 370 (1987).

    Article  ADS  Google Scholar 

  8. A. J. Heeger, S. Kivelson, J. R. Schrieffer, et al., Rev. Mod. Phys. 60, 781 (1988).

    Article  ADS  Google Scholar 

  9. A. Chodos and H. Minakata, Phys. Lett. A 191, 39 (1994).

    Article  ADS  Google Scholar 

  10. H. Caldas, J. L. Kneur, M. B. Pinto, et al., Phys. Rev. B 77, 205109 (2008).

    Article  ADS  Google Scholar 

  11. V. Schoen and M. Thies, arXiv:hep-th/0008175.

  12. M. Thies, J. Phys. A 39, 12707 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  13. G. W. Semenoff, I. A. Shovkovy, and L. C. R. Wijewardhana, Mod. Phys. Lett. A 13, 1143 (1998).

    Article  ADS  Google Scholar 

  14. V. Ch. Zhukovskii, K. G. Klimenko, V. V. Khudyakov, and D. Ebert, JETP Lett. 73, 121 (2001).

    Article  ADS  Google Scholar 

  15. V. Ch. Zhukovsky and K. G. Klimenko, Theor. Math. Phys. 134, 254 (2003).

    Article  Google Scholar 

  16. E. C. Marino and L. H. C. M. Nunes, Nucl. Phys. B 769, 275 (2007).

  17. K. G. Klimenko, R. N. Zhokhov, and V. C. Zhukovsky, Phys. Rev. D 86, 105010 (2012).

    Article  ADS  Google Scholar 

  18. K. G. Klimenko, R. N. Zhokhov, and V. C. Zhukovsky, Mod. Phys. Lett. A 28, 1350096 (2013).

    Article  ADS  Google Scholar 

  19. D. Ebert, K. G. Klimenko, P. B. Kolmakov, and V. Ch. Zhukovsky, Ann. Phys. 371, 254 (2016).

    Article  ADS  Google Scholar 

  20. K. G. Klimenko, Z. Phys. C 37, 457 (1988).

    Article  ADS  Google Scholar 

  21. B. Rosenstein, B. J. Warr, and S. H. Park, Phys. Rep. 205, 59 (1991).

    Article  ADS  Google Scholar 

  22. A. A. Andrianov, D. Espriu, and X. Planells, Eur. Phys. J. C 73, 2294 (2013)

    Article  ADS  Google Scholar 

  23. A. A. Andrianov, D. Espriu, and X. Planells, Eur. Phys. J. C 74, 2776 (2014).

    Article  ADS  Google Scholar 

  24. R. Gatto and M. Ruggieri, Phys. Rev. D 85, 054013 (2012).

    Article  ADS  Google Scholar 

  25. L. Yu, H. Liu, and M. Huang, Phys. Rev. D 90, 074009 (2014).

    Article  ADS  Google Scholar 

  26. G. Cao and P. Zhuang, Phys. Rev. D 92, 105030 (2015).

    Article  ADS  Google Scholar 

  27. V. V. Braguta and A. Y. Kotov, Phys. Rev. D 93, 105025 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  28. D. Ebert, T. G. Khunjua, K. G. Klimenko, and V. Ch. Zhukovsky, Phys. Rev. D 93, 105010 (2016).

    Article  ADS  Google Scholar 

  29. A. N. Vasil’ev, Functional Methods in Quantum Field Theory and Statistics (Leningr. Univ., Leningrad, 1976).

    Google Scholar 

  30. D. Ebert, T. G. Khunjua,and K. G. Klimenko, Phys. Rev. D 94, 116016 (2016)).

    Article  ADS  Google Scholar 

  31. T. G. Khunjua, K. G. Klimenko, R.N. Zhokhov and V. Ch. Zhukovsky, arXiv: 1704.01477 (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ch. Zhukovsky.

Additional information

Original Russian Text © V.Ch. Zhukovsky, K.G. Klimenko, T.G. Khunjua, 2017, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2017, No. 3, pp. 48–55.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukovsky, V.C., Klimenko, K.G. & Khunjua, T.G. Superconductivity in chiral-asymmetric matter within the (2 + 1)-dimensional four-fermion model. Moscow Univ. Phys. 72, 250–256 (2017). https://doi.org/10.3103/S002713491703016X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S002713491703016X

Keywords

Navigation