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Abstract. Excursion theory is revisited on the ground of Itô–McKean diffusions.
There are raised questions about symmetries, knock-in processes, excursion local
time and the non-linear version of the master formula of excursions. The questions
are answered due to introducing the counting excursion technique. The technique is
a synthesis of straddling at time approach, the classical, potential in spirit approach,
and the theory of convolution algebra of locally integrable functions, generalized
later in this work for the convolutions of σ–finite measures. Some examples are
presented, including the famous problem of expressing the density of first hitting
time of Ornstein-Uhlenbeck process in terms of elementary functions.

1. Introduction

On the ground of classical theory of Itô–McKean diffusions we raise questions re-
lated to excursion theory of Markov processes. These concern symmetries, knock-in
processes, excursion local time and finally the non-linear version of master formula
of excursions. The primal reference for the theory of Itô–McKean diffusions (called
later in this paper simply diffusions) is the monograph Itô and McKean (1974). The
references for excursion theory are again Itô and McKean (1974) but also Rogers
and Williams (1987) or Revuz and Yor (1991). Excursion theory, initiated originally
by Itô (1972), is a probabilistic method of describing the paths of Markov processes
by setting their fragments into a Poisson structured space. The synthesis of sev-
eral concepts of excursion theory is the Blumenthal’s acclaimed book (Blumenthal,
1992).

Our contribution to excursion theory for diffusions relies on developing the new
computational technique, called later counting excursions. We divide a path of a
diffusion X into the excursions from a level x and for a fixed time t > 0 we consider
some integral functionals of X on [0, t]. We count the excursions before t and
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complement the functional by the fragment straddling at t. The regular excursion
fragments are described by the master formula in terms of excursion measure and an
associated local time. The complemented fragment straddling at t is described by
means of potential theory. Our technique is to compare obtained description with
the information coming from the distribution of X and its transition density. Some
elements of the technique have been already used for studies on Bessel processes
with negative index in Byczkowski et al. (2019). For the straddling at time approach
see the comprehensive study of Getoor (1979).

The reason for the choice of the diffusive setup does not come from the neces-
sity to work on a process with continuous paths, but rather from the fact that
Itô–McKean diffusions are regular and rich with useful objects for the effective dis-
tributional characterization. For a detailed discussion on such a setup and its use in
excursion theory see the monograph of Salminen, Vallois and Yor (Salminen et al.,
2007). Our contribution to the theory of Itô–McKean diffusions relies on using
the algebra of convolution of locally integrable functions on non-negative half-line.
Combining the counting excursions technique with convolution algebra approach
turns out to be essential for answering the questions raised above. A recent study
on convolution algebra approach for the notions of first hitting time, local time
and generalized Stroock Wiliams equation can be also found in Jakubowski and
Wiśniewolski (2020) and Jakubowski and Wiśniewolski (2020+).

In what follows we give an overview of our results. For a diffusion X and points
x, b, we consider excursions from x and a killed diffusion obtained by sending X
to the cemetery state at the first hitting time of b. We develop a new formula
joining the transition densities of a killed processes and the corresponding first
hitting time. Joining it with the formula of Hunt, we will discover symmetries of
transition densities of killed processes and new relations between densities of first
hitting times and the Lévy measure of inverse local time of X at x. It is well known
that the distribution of the first hitting time may be asymmetric in a sense that
there is an elementary formula for the density of hitting x when one starts from b,
and at the same time we do not know the accessible formula for the case, when the
roles of b and x are exchanged. We present a new representation of the density of
the first hitting time of b when X starts from x in terms of the following objects:
transition density of X, the Lévy measure of inverse local time at x and finally, the
first hitting time of x when the process starts from b. We present a new approach
to well known problem of finding the formula of the density of the first hitting time
of b by an Ornstein-Uhlenbeck process which starts from 0 (see Alili et al., 2005,
Lipton and Kaushansky, 2018, Hamana, 2020).

For the two fixed regular points of the state space (say x and b) we study sym-
metries for additive functionals of X. We present several dependencies between
expectations of functionals considered under excursion measures P̂x and P̂b respec-
tively. We also define the double-knock-in process which behaves like X until it
exits the given interval I. Then it becomes the process killed at x. The knock-in
process is defined analogously. We develop formula joining the transition densities
of the process killed at x and the process killed at the exit from I. This leads to
a conclusion that the transition density of a double-knock-in is the convolution of
the density of the process killed at first exit from I and the density of first hitting
time of a single point. Moreover, using these concepts we generalize the classical
Hunt formula. The notion of knock-in constructions is strictly connected with the
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financial problem of pricing and hedging so called barrier options (see Mijatović
and Pistorius, 2013).

Next we study the distribution of excursion local time. The concept of excursion
local time for a Brownian motion is presented in Trotter (1958) and in a more
general context in Blumenthal (1992, Ch. VI). A brilliant application of the notion
of excursion local time for branching processes was presented by Le Gall (1991).
We find the convolution formula for the Laplace transform of excursion local time.
For this, inspired mostly by the work of Lew (1972), we develop the theory of
convolutions of σ-finite measures.

Last but not least we present a generalization of the master formula of excursions
for the non-linear case. Although the exponential version of the master formula for
additive functionals of a Markov process X has been known before (see Revuz and
Yor, 1991, Ch. XII, Sect. 2), it has not built any deeper understanding of the
non-linear case of the excursion formula. We shed a new light on the the last
problem. We find a non-linear formula for the class of additive functionals. The
structure of our result reminds the Getoor’s description (Getoor, 1979) of straddling
at time excursions, but unlike their formula our result has not a local character. We
present a Markovian kernel describing the sum of excursions under the arbitrary
chosen function. The presentation of non-linear version of the master formula in
terms of the Markovian kernel is exactly in the spirit of general excursion theory
(see Blumenthal, 1992, Ch. VII).

2. Preliminaries

On a complete probability space (Ω,F ,P) endowed with a filtration (Ft)t∈[0,∞)

satisfying the usual conditions we consider a diffusion X with the state space E =
(l, r) ⊂ R where l and r do not need to be finite. The death-time of X is denoted
by ζ and we assume that X is continuous on [0, ζ). Not loosing much generality we
will always assume that ζ =∞ (see discussion in Getoor (1979)). We assume that
each point y ∈ E is a regular point. We use standard notation for the measure Px
under which X0 = x a.s. By θ we denote the shift operator. We also assume that
for any x ∈ Int(E) and y ∈ E we have Px(σy <∞) > 0, where σy denotes the first
hitting time of y.

A linear diffusion has three basic characteristics defined on E: the speed measure
m, a scale function s and the killing measure k, whose properties determine the
behavior of X in the vicinity of the endpoints of E. In general, the functions m, s, k
are responsible for boundary classification (see, e.g., Itô and McKean, 1974, pp.108
and Borodin and Salminen, 2002, Chapter II, Section 1). We will always assume
that k ≡ 0.

It is well known (see Salminen et al., 2007, 1.2 or Borodin and Salminen, 2002,
Chapter II, pp. 4) that in the above setup a diffusion X has a jointly continuous
transition density pt(x, y) with respect to the speed measure m, i.e.

Px(Xt ∈ A) =

∫
A

pt(x, y)m(dy)

for every Borel subset A of E. Moreover, p is symmetric, that is, pt(x, y) = pt(y, x).
The Green (resolvent) kernel of X is defined for λ > 0 by

Rλ(x, y) =

∫ ∞
0

e−λtpt(x, y)dt.
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The last object is especially useful for the description of the Laplace transform of
σy, since

Exe−λσy =
Rλ(x, y)

Rλ(y, y)
(2.1)

(see Salminen et al., 2007, formula (3)). It is known that σy has under Px a density
gxy , and moreover the mapping t 7→ gxy (t) is continuous as follows from the eigen-
differential expansions and discussion in Itô and McKean (1974, pp. 153 and 217)
(see also Kent, 1980). By (Lx) we denote the jointly continuous version the local
time of X at the point x, which is well defined due to assumptions on regularity
of points from E. We assume that the local time is normalized such that for every
measurable f on E and t > 0∫ t

0

f(Xs)ds =

∫
E

f(z)Lztm(dz) a.s.

We will also need some elements of convolution algebra theory. In particular for
locally integrable f, g we denote by f ∗ g their convolution

(f ∗ g)(t) =

∫ t

0

f(u)g(t− u)du, t ≥ 0. (2.2)

The background of the theory of convolution algebra will be given in Section 3.
We assume that our probability space is a canonical space and that the coordinate

process X is a linear diffusion under a measure Px. The setup here is standard and
Ω is a set of continuous E-valued functions with associated σ-field of measurable
functions and filtration (Ft)t∈[0,∞) satisfying usual conditions. We assume that the
speed measure m does not have atoms. It is well known that for a linear diffusion,
due to existence of the local time at x ∈ E, the classical Itô theory of excursions
of the process X from the point 0 may be applied (see Blumenthal, 1992, Chapter
III). Let U be the subspace of continuous functions u : [0,∞) → E such that
0 < R(u) ≤ ∞, where R(u) = inf{t > 0 : u(t) = x} and u(0) = x, u(v) > 0 for
v ∈ (0, R(u)). Moreover, we demand that u(t) = x for all t ≥ R(u). Let U be the
σ-algebra generated by the coordinate mappings. Let δ : [0,∞)→ E be a constant
function, δ(t) ≡ x. We denote by U δ the space U ∪ {δ}, and set Uδ = σ(U, {δ})
(actually δ serves only for the formal definition of excursion path-space and will
not be used in the sequel). Finally, on the canonical space we consider an excursion
point process (es)s>0 and we denote by P̂x(·) the associated measure of excursions
from x (see Blumenthal, 1992, Chapter III). If a diffusion is recurrent then the
point process (es)s>0 is a Poisson point process and the theory is built upon the
stochastic integral with respect to Poisson process (see Revuz and Yor, 1991, Section
1 Chapter XII). However, in the general case the theory is build on the properties
of excessive functions and in particular on the existence of the associated additive
functional, which in case of excursions from the point is simply a local time. One
should notice that the existence of excursion measure, fundamental master formula
and Markov property under the measure of excursions in no way depend on the
recurrence hypothesis (see Blumenthal, 1992, Section 3, point (g), Chapter III).
Thus we are not limited by the recurrence assumption.

The path-space of excursions can be seen as an immersion into the canonical
space. If the measure of excursions from x is denoted by P̂x, we recall the well
known fact that a coordinate process X killed at R (denoted by X̂) is under P̂x a
Markov process with a transition function equal to the transition function of the
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initial diffusion killed at x. The advantage of working under the diffusive setup is
that the entrance law of X̂ is given on measurable subsets of E \ {x} by

P̂x(X̂t ∈ dz) = gzx(t)m(dz), (2.3)

(see Salminen et al., 2007, Sect. 2).

3. Symmetries for the transition densities of killed diffusions

In what follows we assume that a diffusion X̂(b), built on X by killing at first
hitting time of b ∈ E, has a transition density with respect to the speed measure,
denoted by p̂(b). Although we will regularly omit the dependence of p̂(b) on t, we
always have in mind that

p̂
(b)
t (x, z)m(dz) = Px(X̂

(b)
t ∈ dz), t > 0.

In the sequel we will use the classical result of Hunt saying that

p̂(b)(x, z) = p(x, z)− p(b, z) ∗ gxb , (3.1)

(see Bogus and Małecki, 2015). The notation of a killed diffusion should not be
confused with a coordinate process under excursion measure. The following new
representation of p̂(b) is a consequence of application of the counting excursions
technique.

Theorem 3.1. Assume that x, z, b ∈ E. Then

p̂(b)(x, z) = gzx ∗ p̂(b)(x, x)− gxb ∗ p̂(x)(b, z). (3.2)

Proof : Let (es)s>0 be the point process of excursions away from the set {x} of the
process X, and P̂x(·) be the corresponding excursion measure on an associated path
space. Assume that t > 0 is fixed, σb is the first hitting time of b, and f is a Borel
positive or bounded function f on E. We write the integral Ex

∫ t∧σb
0

e−λrf(Xr)dr
in terms of excursions (es). For this let dxt := inf{s ≥ t : Xs = x}, and for (Lx) the
process of local time of X at x, let

τxt = inf{s > 0 : Lxs > t}, τxt− = inf{s > 0 : Lxs ≥ t}.

By G we denote the set of left hand sides of excursion intervals, that is

G = {τxr− : τxr > τxr−}.

Since we assumed that the speed measure m does not have atoms, and thus there is
no mass put on the set {x}, we can write for a Borel positive and bounded function
f on E

Ex
∫ t∧σb

0

e−λrf(Xr)dr = Ex
∑

G∩[0,t∧σb)

∫ τxr

τxr−

e−λsf(Xs)ds− Ex
[ ∫ dxt∧σb

t∧σb
e−λsf(Xs)ds

]
(3.3)

= I(t)− II(t).

Observe that

I(t) = Ex
∑

G∩[0,t∧σb)

e−λτ
x
r−

(∫ σx

0

e−λsf(Xs)ds
)
◦ θτxr− = Ex

∑
{r:τxr−<t∧σb}

e−λτ
x
r−Ff (er),
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where F (u) =
∫ R(u)

0
e−λsf(u(s))ds. The master formula of excursions (see, e.g.,

Blumenthal, 1992, Theorem 3.24 and formula (3.27) in Chapter III) applied to the
excursion point process (es), parametrized in line with Itô’s theory by the process
of inverse local time at 0, yields

Ex
∑

{r:τxr−<t∧σb}

e−λτ
x
r−Ff (er) = Ex

∫ t∧σb

0

e−λs
[ ∫

U

Ff (u)P̂x(du)
]
dLxs

=

∫
U

Ff (u)P̂x(du)
(
Ex
∫ t

0

e−λsdLxs∧σb

)
.

On the other hand, by strong Markov property

II(t) = Ex
[ ∫ dxt∧σb

t∧σb
e−λsf(Xs)ds

]
= Exe−λt∧σbEXt∧σb

[ ∫ σx

0

e−λsf(Xs)ds
]
.

Thus, letting now t→∞ in (3.3) and some standard limit arguments yield

Ex
∫ σb

0

e−λrf(Xr)dr =

∫
U

Ff (u)P̂x(du)
(
Ex
∫ ∞
0

e−λsdLxs∧σb

)
− Exe−λσb

[
Eb
∫ σx

0

e−λsf(Xs)ds
]
. (3.4)

We have

Ex
∫ σb

0

e−λrf(Xr)dr =

∫
E

f(z)

∫ ∞
0

e−λsp̂(b)s (x, z)ds m(dz).

Define a measure on B(R+) by µx,b(0, t) := ExLxt∧σb , so that

Ex
∫ ∞
0

e−λsdLxs∧σb =

∫ ∞
0

e−λsµx,b(ds).

Integration by parts yields easily that∫ ∞
0

e−λsµx,b(ds) = λ

∫ ∞
0

e−λsµx,b(0, s)ds. (3.5)

By immersion, u(·) on (0, R(u)) can be identified with the coordinate process X̂
killed at R, which is under P̂ a Markov process with the entrance law given by
P̂(Xt ∈ dz) = gzx(t)m(dz) and the semigroup of the initial diffusion killed at the
first hitting time of x. Thus, recalling the definition of Ff we obtain∫

U

Ff (u)P̂x(du) =

∫
E\{x}

∫ ∞
0

e−λsf(z)gzx(s)dsm(dz).

By Fubini’s theorem and a property of convolution

Exe−λσb
(
Eb
∫ σx

0

e−λsf(Xs)ds
)

=
(∫ ∞

0

e−λsgxb (s)ds
)(∫ ∞

0

∫
E

e−λsf(z)p̂(x)s (b, z)m(dz)ds
)

=

∫
E

∫ ∞
0

e−λsf(z)
(
gxb ∗ p̂(x)(b, z)

)
(s)dsm(dz).
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Inserting just obtained identities into (3.4), using the fact that m does not charge
a single point and arbitrary choices of λ and f yield a.e. that for t > 0, z ∈ E

p̂
(b)
t (x, z) =

∫ t

0

gzx(t− s)µx,b(ds)−
∫ t

0

gxb (t− s)p̂(x)s (b, z)ds.

Let µ̄x,b(t) := µx,b(0, t). Using (3.5) we may rewrite the last equality as

1 ∗ p̂(b)(x, z) = gzx ∗ µ̄x,b − 1 ∗ gxb ∗ p̂(x)(b, z). (3.6)

A simple use of occupation time formula shows that µ̄x,b = 1 ∗ p̂(b)(x, x). Indeed,
the last follows from identity

Ex
∫ t∧σb

0

f(Xs)ds = Ex
∫
E

f(z)Lzt∧σbm(dz),

which holds for arbitrary Borel positive bounded f . As a result we rewrite (3.6) in
the form

1 ∗ p̂(b)(x, z) = gzx ∗ 1 ∗ p̂(b)(x, x)− 1 ∗ gxb ∗ p̂(x)(b, z),

so using the fact that the algebra of locally integrable function on positive half-line,
with operation of convolution has not 0-divisors, we finally obtain

p̂(b)(x, z) = gzx ∗ p̂(b)(x, x)− gxb ∗ p̂(x)(b, z).

�

As a simple corollary of the last theorem we obtain the symmetric formulas for
transition densities of killed diffusions.

Corollary 3.2. For x, b ∈ E we have

gbx ∗ p̂(b)(x, x) = gxb ∗ p̂(x)(b, b), (3.7)

p(b, b) ∗ p̂(b)(x, x) = p(x, x) ∗ p̂(x)(b, b). (3.8)

Proof : Recalling that (x, z) 7→ p(x, z) is jointly continuous, we may let z tend to b
and conclude from the Hunt formula (3.1) that limz→b p̂

(b)(x, z) = 0. Now observe,
that formula (3.2) and the Hunt formula imply that z 7→ gzx∗p̂(b)(x, x) is continuous.
Moreover

0 = lim
z→b

(
gzx ∗ p̂(b)(x, x)− gxb ∗ p̂(x)(b, z)

)
= gbx ∗ p̂(b)(x, x)− gxb ∗ p̂(x)(b, b).

The first assertion follows. To obtain the second formula, we rewrite (3.7) in the
form

p(b, b) ∗ p(x, x) ∗ gbx ∗ p̂(b)(x, x) = p(b, b) ∗ p(x, x) ∗ gxb ∗ p̂(x)(b, b),

repeat the identity p(y, y) ∗ gxy = p(x, y) which holds for any x, y ∈ E, and use
the fact the there are no 0-divisors in the convolution algebra of locally integrable
functions on a positive half–line. �

Recall that by P̂x we denoted the measure of excursions of X from the fixed
point x ∈ E, and by R we denoted the life-time of an excursion. Define a measure
γx(dt) = P̂x(R ∈ dt). It is well known that γx is a Lévy measure of the inverse of
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local time of X at x denoted by (τxt )t≥0. For a locally integrable f by f ∗ γx we
denote the convolution (with respect to a σ-finite measure)

(f ∗ γx)(t) =

∫ t

0

f(t− u)γx(du).

If f is an element of A and µ is a σ–finite signed measure on B(R+), we may define
(f ∗ µ)(t) =

∫ t
0
f(t− u)µ(du), and since f ∗ µ ∈ A we may continue with recursive

definition setting f ∗ µ∗(n+1) := (f ∗ µ∗n) ∗ µ, n ≥ 1. The last definition will play
an important role in Section 5.

Corollary 3.3. Assume that x, b ∈ E. We have

gxb + gxb ∗ gbx = p̂(b)(x, x) ∗ γx. (3.9)

Proof : We use formula (3.2) to write∫
E

p̂
(b)
t (x, z)m(dz) =

∫
E

∫ t

0

gzx(u)p̂
(b)
t−u(x, x)dum(dz)

−
∫
E

∫ t

0

gxb (t− u)p̂(x)u (b, z)dum(dz).

By the definition of a killed process, Fubini’s theorem, the definition of entrance
law of coordinate process under P̂x (that is by formula (2.3)) and the last equality
we obtain

Px(σb > t) +

∫ t

0

gxb (t− u)Pb(σx > u)du =

∫ t

0

p̂
(b)
t−u(x, x)P̂x(R > u)du.

Hence

gxb + gxb ∗ gbx = p̂(b)(x, x) ∗ γx,

as asserted. �

In some cases, the use of some clever analytic and probabilistic arguments may
result in the explicit form of gbx for fixed x, b ∈ E. At the same time, we may fail to
establish the analogous simple formula for gxb . To give an example of asymmetry
of this kind, recall the famous case of Ornstein-Uhnlenbeck process where the form
of gb0 is well known and relatively simple, while the form of g0b appears only as a
series of complicated functions or complicated integral transforms (see Alili et al.,
2005 for a detailed discussion). In what follows we will find the form of functional
H such that (writing informally)

gxb = H·(p(x, x), γx(·), gbx).

We will then present how the last works for Ornstein-Uhlenbeck case and thereby
we contribute to the long problem of finding representation of g0b via elementary
functions. For this let us introduce some background of convolution algebra theory.

By A we denote the set of all real-valued locally integrable functions on [0,∞).
The convolution of f, g ∈ A is given by (2.2). We recall after Lew (1972) that
A is closed under point-wise addition, scalar multiplication and convolution. A is
a commutative associative algebra over the real numbers, and we may define the
convolution powers by

f∗1 = f, f∗(n+1) = f ∗ f∗n, n = 1, 2, ....
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Let

ut(f) =

∫ t

0

|f(u)|du, t > 0.

We denote by U the topology in A generated by the family of semi-norms un(f), n =
1, 2, . . . . The space A with this topology is complete, metrizable and locally convex.
We have

ut(f ∗ g) ≤ ut(f)ut(g), (3.10)

and it is well known that the algebra A can be adjoined with an identity δ to obtain
a topological algebra Â = A ⊕ δ, called the unitization of A (see Năımark, 1959
p. 170). If f, g1, g2 ∈ A, f 6= 0 and f ∗ g1 = f ∗ g2, it follows from Titchmarsh
theorem that g1 = g2 (see Titchmarsh, 1926).

For a given element f ∈ A, one can define a quasi-inverse of fwhich is an element
f† ∈ A such that

f + f† = f ∗ f†.

It can be shown that each f ∈ A has a unique quasi-inverse, the mapping f 7→ f†

defines a homeomorphism from (A,U) into itself (Lew, 1972, Theorem 1) and

f† = −
∑
n≥1

f∗n. (3.11)

Hence, the sum on the RHS of the last equality always converges.
If δ denotes a neutral element, we have for any h ∈ A and quasi-inverse h†

(δ − h) ∗ (δ − h†) = δ.

Setting ĥ = δ − h ∈ Â we see that ĥ is invertible in Â and ĥ−1 = δ − h†. Finally,
for any f, g ∈ A the Volterra integral equation of the second kind

v = f + g ∗ v,

has a unique solution given by

v = f − f ∗ g†, (3.12)

which depends continuously on f and g in the topology U (see Lew, 1972, Theo-
rem 2).

We are ready to present the announced formula for the density gxb .

Theorem 3.4. Assume that x, b ∈ E. For any y ∈ E define

∆(x, y, b) := p(y, x)− p(y, x) ∗ (−gbx)† (3.13)

= p(y, x) + p(y, x) ∗
∑
n≥1

(−1)n(gbx)∗n.

Then

gxb = ∆(x, x, b) ∗ γx + ∆(x, x, b) ∗
∑
n≥1

∆∗n(x, b, b) ∗ γ∗(n+1)
x . (3.14)

Proof : By Corollary 3.3 we may write

gxb = p̂(b)(x, x) ∗ γx − gxb ∗ gbx, (3.15)
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and we look at the last equality as an integral equation with respect to gxb . Using
(3.12) we obtain

gxb = p̂(b)(x, x) ∗ γx − p̂(b)(x, x) ∗ γx ∗ (−gbx)†. (3.16)

By the Hunt formula

p̂(b)(x, x) = p(x, x)− p(b, x) ∗ gxb ,
so inserting the last identity into (3.16) yields

gxb =
(
p(x, x)− p(b, x) ∗ gxb

)
∗ γx −

(
p(x, x)− p(b, x) ∗ gxb

)
∗ γx ∗ (−gbx)†.

After reordering, we arrive at Volterra integral equation of the second kind with
respect to gxb . Indeed, by the Hunt formula

gxb = p(x, x) ∗ γx −
(
p(x, x)− p(b, x) ∗ gxb

)
∗ (−gbx)† ∗ γx − gxb ∗

(
p(b, x) ∗ γx

)
= p(x, x) ∗ γx − p(x, x) ∗ (−gbx)† ∗ γx + gxb ∗

(
p(b, x) ∗ γx ∗ (−gbx)† − p(b, x) ∗ γx

)
.

It follows again from (3.12) that

gxb =
(
p(x, x)− p(x, x) ∗ (−gbx)†

−
(
p(x, x)− p(x, x) ∗ (−gbx)†

)
∗
(
γx ∗ p(b, x)− γx ∗ p(b, x) ∗ (−gbx)†

)†) ∗ γx,
so recalling the definition (3.13) of ∆, we obtain from the last equality

gxb =
(

∆(x, x, b)−∆(x, x, b) ∗
(
γx ∗∆(x, b, b)

)†) ∗ γx
= ∆(x, x, b) ∗ γx −∆(x, x, b) ∗ γx ∗

(
γx ∗∆(x, b, b)

)†
.

The assertion follows from the definition of a quasi–inverse element. �

Example 3.5. (Ornstein–Uhlenbeck process) Let X be an Ornstein–Uhlenbeck pro-
cess (OU), that is a strong solution of SDE

Xt = X0 +Bt − α
∫ t

0

Xudu,

where B is a standard Brownian motion. Alili, Patie and Pedersen (Alili et al.,
2005) gather different expressions for the density function gxb of the first hitting
time of OU process. They provide the Laplace transform of σb for x < b (X0 = x)
in terms of Hermite and parabolic cylinder functions, which is next inverted by
means of the Cauchy residue theorem. The obtained denisty is a series expressed in
terms of parabolic cylinder functions. Another representations given in Alili et al.
(2005) is the cosine transform of the distribution of σb. As a result, the density gxb
is obtained out from the cosine transform. Their final method relies on observation
that computing the density of σb equals to characterizing the distribution of a
quadratic functional of the 3-dimensional Bessel bridge. The killed version of the
OU process is considered in Salminen et al. (2007), where the results rely on the use
of Doob’s transform and the form of density gxb expressed as a limit with respect to
scale function of the transition density of a killed process Salminen et al. (2007, (2)).
In Lipton and Kaushansky (2018), author claimed that the problem of expressing
gxb (b ∈ R) in terms of elementary functions is still open. The newest result in
this direction by Hamana (2020) concerns the first hitting time of radial Ornstein–
Uhlenbeck process (that is the euclidean norm of independent OU processes). He
studies the case when the hitting site is closer to the origin than the starting point
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and obtains the probability density function by the Heaviside expansion theorem.
Our approach, based on counting excursion technique, is new and totally different
from all mentioned above.

As one can easily check (see Salminen et al., 2007, Sect. 5) all the ingredients of
formula (3.14) for Ornstein-Uhlenbeck process are given. For simplicity we assume
that X0 = 0 and α > 0. Namely, we have for x = 0, b ∈ R and t > 0

pt(0, 0) =
1

2

√
α√

2π sinh(αt)
e
αt
2 , pt(b, 0) =

1

2

√
α√

2π sinh(αt)
e
αt
2 +αb2

2 (1−coth(αt)),

γ0(dt) =
α3/2e

αt
2

√
2π(sinh(αt))3/2

dt, gb0(t) = b γ0(t)e−b
αe−αt

2 sinh(αt) ,

and so

g0b = ∆(0, 0, b) ∗ γ0 + ∆(0, 0, b) ∗
∑
n≥1

∆∗n(0, b, b) ∗ γ∗(n+1)
0 ,

where

∆(0, 0, b) = p(0, 0) + p(0, 0) ∗
∑
n≥1

(−1)n(gb0)∗n,

∆(0, b, b) = p(b, 0) + p(b, 0) ∗
∑
n≥1

(−1)n(gb0)∗n.

�
The above asymmetries motivate a question about the similar effects within the

class of additive functionals of X. The question is how the symmetry of an addi-
tive functional F on a canonical space between expectations of minimal processes
affects the expectations of the same additive functional but on the path-space with
respect to the excursion measure. The next result shows the dependencies between
expectations of such a functional taken with respect to P̂x and P̂b respectively. We
consider F defined on a path-space of continuous functions.

Definition 3.6. We say that there is an universal symmetry for x, b ∈ E and F if

ExFt(X̂(b)) = EbFt(X̂(x)), t > 0, (3.17)

where the expectations above are assumed to be finite.
As usual X̂(b) denotes the process killed at first hitting time on b. We say that

F is universally integrable if

ExFt(X̂(y)) <∞, P̂xFt∧R(X) <∞,

for any x, y ∈ E and t > 0. We say that F is of finite potential if for every λ > 0

Ex
∫ ∞
0

e−λtdFt(X) <∞, x, y ∈ E.

For t > 0 we define two measures

µx,b(0, t) := ExFt(X̂(b)), µ̂x(0, t) := P̂xFt∧R(X),

where in the second definition X denotes a coordinate process on the path-space U .
Since F0 = 0, it is enough to define above measures on open intervals (0, t), t > 0.
By equality µx,b = µb,x (µ̂x = µ̂b) we mean µx,b(0, t) = µb,x(0, t) (µ̂x(0, t) = µ̂b(0, t))
for every t > 0.
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Theorem 3.7. Assume that (Ft)t≥0 is an additive and universally integrable func-
tional of X, and that there is an universal symmetry for x, b and F . Then

(1) (1 + gxb ) ∗ p(b, b) ∗ µ̂b = (1 + gbx) ∗ p(x, x) ∗ µ̂x.
(2) µ̂x = µ̂b ⇔ p(x, x) = p(b, b).

Proof : Step 1. Assume that (3.17) holds for fixed x, b ∈ E and every t > 0.
Let At := Ft(X) and Â

(b)
t := Ft(X̂

(b)). For λ > 0 consider Ex
∫ t∧σb
0

e−λudAu.
Repeating the idea of proof of Theorem 3.1 we obtain It − IIt = IIIt, where

It := Ex
∑

τxs−<t∧σb

e−λτ
x
s−

(∫ σx

0

e−λudAu

)
◦ θτxs− ,

IIt := Ex
(
e−λ(t∧σb)EXt∧σb

∫ σx

0

e−λudAu

)
, IIIt := Ex

∫ t

0

e−λudÂ(b)
u .

Using the master formula of excursions we obtain

It = Ex
∫ t

0

e−λsdLxσb∧s

∫
U

F̄ (u)P̂x(du),

where F̄ is defined on the path–space U by F̄ (u) =
∫ R(u)

0
e−λsdFs(u). Putting the

things together we conclude that

Ex
∫ t

0

e−λsdLxσb∧s

∫
U

F̄ (u)P̂x(du) = Ex
(
e−λ(t∧σb)EXt∧σb

∫ σx

0

e−λudAu

)
+ Ex

∫ t

0

e−λudÂ(b)
u . (3.18)

Recall that µx,b(0, s) := ExÂ(b)
s and µ̂x(0, s) := P̂xFs∧R(X). Moreover,

Ex
(
e−λt1{t<σb}EXt

∫ σx

0

e−λudAu

)
≤ e−λtEx

∫ ∞
t

e−λudAu,

so by the finiteness of the potential of A, the last tends to 0 with t→∞. By (3.18)
and arbitrary choice of λ∫ t

0

p̂
(b)
t−s(x, x)µ̂x(ds) =

∫ t

0

gxb (t− s)µb,x(ds) + µx,b(0, t), (3.19)

where we used the identity
∫ t
0
p̂
(b)
s (x, x)ds = ExLxσb∧t. Let µ̄x,b(t) := µx,b(0, t).

Rewriting (3.19) in terms of convolution algebra yields

p̂(b)(x, x) ∗ µ̂x = µ̄x,b + gxb ∗ µb,x.

Since µ̄x,b = 1 ∗ µx,b and µx,b = µb,x (by universal symmetry), we may rewrite the
last equality as

p̂(b)(x, x) ∗ µ̂x = (1 + gxb ) ∗ µb,x, (3.20)

and analogously

p̂(x)(b, b) ∗ µ̂b = (1 + gbx) ∗ µx,b. (3.21)

Using the Hunt formula and multiplying both sides by p(b, b) (in a sense of convo-
lution) yield(

p(b, b) ∗ p(x, x)− p(b, x) ∗ p(b, x)
)
∗ µ̂x = p(b, b) ∗ (1 + gxb ) ∗ µb,x,
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and by symmetry(
p(b, b) ∗ p(x, x)− p(b, x) ∗ p(b, x)

)
∗ µ̂b = p(x, x) ∗ (1 + gbx) ∗ µb,x.

Thus

p(b, b) ∗ (1 + gxb ) ∗ µ̂b = p(x, x) ∗ (1 + gbx) ∗ µ̂x.

Step 2. (⇒) If µ̂x = µ̂b, we have from point 1.

p(b, b) ∗ (1 + gxb ) = p(x, x) ∗ (1 + gbx),

from which it follows that

p(b, b) ∗ 1 + p(x, b) = p(x, x) ∗ 1 + p(b, x).

Symmetry of p yields that p(x, x) = p(b, b).

(⇐) Observe that for given x, b ∈ E equality p(x, x) = p(b, b) is equivalent with
equality gxb = gbx. Indeed, this follows from Corollary 3.2. If p(x, x) = p(b, b), then
by equality (3.7) we have (gbx − gxb ) ∗ p(x, x) = 0, so gxb = gbx. If in turn gxb = gbx,
then again by (3.7) it follows that p̂(b)(x, x)− p̂(x)(b, b) = 0, so by the Hunt formula
we immediately get p(x, x) − p(b, b) = 0. Hence, by point 1. we easily find that
p(x, x) = p(b, b) implies µ̂x = µ̂b. �

Remark 3.8. If we define an operator Kx,b : A → A by

Kx,bf = f ∗ (1 + gxb ) ∗ p(b, b), f ∈ A,
then by point 1. of Theorem 3.7 and Fubini’s theorem, we conclude that an universal
symmetry for x, b and F implies that for each f ∈ A

P̂x
∫ t

0

Kx,bf(t− u)dFu∧R(X) = P̂b
∫ t

0

Kb,xf(t− u)dFu∧R(X).

Example 3.9. The elementary example of situation p(x, x)− p(b, b) = 0 is the case
of p being the transition density of a Brownian motion. Indeed, the known identity
Exe−λσb = e−λ|x−b| confirms the symmetry and equality gxb = gbx.

Next, we define a notion of strong universal symmetry for a "classical" additive
functional and show that it is not satisfied unless p(x, x)− p(b, b) = 0.

Definition 3.10. For a positive Borel function f on E we define on a functional
F f by

F ft (X) :=

∫ t

0

f(Xu)du.

We say that a strong universal symmetry holds for x, b ∈ E if there is an universal
symmetry for x, b and F f for each positive Borel f .

Corollary 3.11. There is no strong universal symmetry for x, b ∈ E unless
p(x, x)− p(b, b) = 0.

Proof : If strong universal symmetry holds for x, b ∈ E then ExF ft (X̂(b)) =

EbF ft (X̂(x)) for each t > 0 and each positive bounded Borel f on E. Thus
p̂
(b)
t (x, z) = p̂

(x)
t (b, z) each z ∈ E and integrating out with respect to m(dz) shows

that Px(σb > t) = Pb(σx > t). Hence, gxb = gbx and we conclude by Theorem 3.7
that p(x, x) = p(b, b). �
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If we assume a little bit more about the function t 7→ gxb , we obtain a symmetric
formula joining µ̂x, µ̂b and gxb , g

b
x.

Theorem 3.12. Under assumptions of Theorem 3.7 suppose that gxb , g
b
x ∈ C1(0,∞).

Then (∂gbx
∂t

+
∂gbx
∂t
∗ ∂g

x
b

∂t

)
∗ µ̂b =

(∂gxb
∂t

+
∂gbx
∂t
∗ ∂g

x
b

∂t

)
∗ µ̂x. (3.22)

Moreover

gbx ∗ µ̂b = (1 + gbx) ∗
(
− ∂gxb

∂t

)†
∗ µ̂x. (3.23)

Proof : It is well known that for a kernel k on [0,∞) such that k(0) = 1, the Volterra
equation of the first kind y ∗ k = f (with respect to y) for k, f ∈ C1(0,∞) may be
reduced to the Volterra equation of the second kind y+ ∂k

∂t ∗y = ∂f
∂t (see Gripenberg

et al., 1990 or Friedman and Shinbrot, 1967). Hence, y = ∂f
∂t −

∂f
∂t ∗

(
− ∂k

∂t

)†
. Since

gxb , g
b
x ∈ C1(0,∞), we may consider the integral equation

1 ∗ p(b, b) ∗ µ̂b ∗ (1 + gxb ) = 1 ∗ p(x, x) ∗ µ̂x ∗ (1 + gbx), (3.24)

with 1+gxb taken as a kernel k, the RHS of (3.24) taken as f and y := 1∗p(b, b)∗ µ̂b.
Indeed, the regularity of points x, b implies that k(0) = 1. The rest of assumptions
follows easily. We solve the equation and obtain

1 ∗ p(b, b) ∗ µ̂b = p(x, x) ∗ µ̂x ∗ (1 + gbx)− p(x, x) ∗ µ̂x ∗ (1 + gbx) ∗
(
− ∂gxb

∂t

)†
.

From point 1. of Theorem 3.7 and the last identity

p(x, b) ∗ µ̂b + p(x, x) ∗ µ̂x ∗ (1 + gbx)− p(x, x) ∗ µ̂x ∗ (1 + gbx) ∗
(
− ∂gxb

∂t

)†
= p(x, x) ∗ µ̂x ∗ (1 + gbx).

As a result

p(x, b) ∗ µ̂b = p(x, x) ∗ µ̂x ∗ (1 + gbx) ∗
(
− ∂gxb

∂t

)†
,

and (3.23) follows from the last equality and identity p(x, b) = p(x, x) ∗ gbx. Next,
we rewrite (3.23) as

1 ∗ ∂g
b
x

∂t
∗ µ̂b = 1 ∗

(
− ∂gxb

∂t

)†
∗ µ̂x + 1 ∗ ∂g

b
x

∂t
∗
(
− ∂gxb

∂t

)†
∗ µ̂x.

Multiplying both sides of the last equality in a sense of convolution by −∂g
x
b

∂t yields

−∂g
x
b

∂t
∗ ∂g

b
x

∂t
∗ µ̂b =

∂gbx
∂t
∗ µ̂b +

(
µ̂x +

∂gbx
∂t
∗ µ̂x

)
∗
(
− ∂gxb

∂t

)
,

and equality (3.23) follows from the last equality and some simple algebra. �
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4. Stopping at exit time

In the previous section, for a given b ∈ E, we counted excursions before t∧σb and
obtained a number of identities for a diffusion stopped at the first hitting time of
a single point. In what follows we will run analogous study for a diffusion stopped
at the first exit time from a given interval. We will count the excursions of X from
x and stop the process at σI := σa ∧ σb, where x ∈ I = (a, b). We introduce an
auxiliary notation. For a < x < b we denote

gxa|b(t)dt := Px(σa ∈ dt, σa < σb), gxb|a(t)dt := Px(σb ∈ dt, σb < σa).

By p̂(I)t we denote a transition density with respect to speed measure of a diffusion
killed at first exit from I, namely

p̂
(I)
t (x, z)m(dz) = Px

(
Xt ∈ dz, t < σI

)
.

For objects used before we use the previous notation.

Theorem 4.1. Assume that x ∈ I = (a, b). For any z ∈ I

p̂(x)(a, z) ∗ gxa|b + p̂(x)(b, z) ∗ gxb|a = gzx ∗ p̂(I)(x, x)− p̂(I)(x, z). (4.1)

Proof : Let t > 0. The proof relies on counting excursions, this time before σI ∧
t. We will skip the repetitions. Let λ > 0 and f be a positive and bounded
Borel function on E. As always we define a function on a path space Fλ(u) =∫ R(u)

0
e−λsf(u(s))ds. What we get from counting excursions approach is equality

IIt = It − IIIt, where

It := Ex
∫ t

0

e−λsdLxs∧σI

∫
U

Fλ(u)P̂x(du),

IIt := Ex
(
e−λt∧σIEXt∧σI

∫ σx

0

e−λsf(Xs)ds
)

= Ex
(

1{σa<σb}e
−λt∧σaEa

∫ σx

0

e−λsf(Xs)ds+ 1{σa>σb}e
−λt∧σbEb

∫ σx

0

e−λsf(Xs)ds
)
,

IIIt := Ex
∫ σI∧t

0

e−λsf(Xs)ds =

∫
E

∫ t

0

e−λsf(z)p̂(I)s (x, z)dsm(dz).

Introducing µ̄x,I(t) := ExLxt∧σI and using the same arguments like in proof of
Theorem 3.1 we conclude that

1 ∗ p̂(x)(a, z) ∗ gxa|b + 1 ∗ p̂(x)(b, z) ∗ gxb|a = gzx ∗ µ̄x,I − 1 ∗ p̂(I)(x, z). (4.2)

By occupation time formula

Ex
∫ t

0

f(X̂(I)
s )ds = Ex

∫
E

f(z)Lzt∧σIm(dz),

so µ̄x,I = 1 ∗ p̂(I)(x, x). As a result, we rewrite (4.2) as follows

1 ∗ p̂(x)(a, z) ∗ gxa|b + 1 ∗ p̂(x)(b, z) ∗ gxb|a = gzx ∗ 1 ∗ p̂(I)(x, x)− 1 ∗ p̂(I)(x, z),

which concludes the proof. �

Taking limits z ↑ b and z ↓ a in formula (4.1) yield a counterpart to Corollary 3.2.
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Corollary 4.2. For a < x < b

p̂(x)(a, b)∗gxa|b + p̂(x)(b, b) ∗ gxb|a = gbx ∗ p̂(I)(x, x),

p̂(x)(a, a)∗gxa|b + p̂(x)(b, a) ∗ gxb|a = gax ∗ p̂(I)(x, x).

Corollary 4.3. Let γx(dt) = P̂x(R ∈ dt). Then

Px
(
σI ∈ dt) + Px

(
σI + σx ◦ θσI ∈ dt

)
=
(
p̂(I)(x, x) ∗ γx

)
(t)dt.

Proof : We integrate both sides of (4.1) with respect to m(dz) and recall that
gzx(t)m(dz) = P̂x(X̂t ∈ dz) (X̂ is a coordinate process on path-space killed at
R). Recall that m does not charge any single point. By a little effort one can verify
that σI has a density denoted (under Px) by gxI . We obtain

gxI + gax ∗ gxa|b + gbx ∗ gxb|a = p̂(I)(x, x) ∗ γx. (4.3)

Next, by strong Markov property(∫ t

0

gax(t− u)Px
(
σa ∈ du, σa < σb

))
dt = Px

(
σa + σx ◦ θσa ∈ dt, σa < σb

)
,

so we may rewrite the LHS of (4.3) as

gxI (t)dt+ Px
(
σa + σx ◦ θσa ∈ dt, σa < σb

)
+ Px

(
σb + σx ◦ θσb ∈ dt, σb < σa

)
= gxI (t)dt+ Px

(
σI + σx ◦ θσI ∈ dt

)
.

The assertion follows. �

The next identity links the joint distribution of Xt and exit time from I, with
the entrance law of excursions.

Theorem 4.4. Let x ∈ (a, b). For any t > 0 we have on I

Px
(
Xt ∈ dz, σI + σx ◦ θσI > t

)
=

∫ t

0

p̂
(I)
t−u(x, x)P̂x

(
X̂u ∈ dz

)
du. (4.4)

Proof : Formula (4.1) yields∫ t

0

Pa
(
Xt−u ∈ dz, t− u < σx

)
Px
(
σa ∈ du, σa < σb

)
+

∫ t

0

Pb
(
Xt−u ∈ dz, t− u < σx

)
Px
(
σb ∈ du, σb < σa

)
+ Px

(
Xt ∈ dz, σI > t

)
=

∫ t

0

p̂
(I)
t−u(x, x)gzx(u)m(dz)du.

Using strong Markov property and the form of entrance law, we rewrite the last
equality ∫ t

0

Px
(
Xt−u+σa ∈ dz, σa ∈ du, t− u < σx ◦ θσa , σa < σb

)
+

∫ t

0

Px
(
Xt−u+σb ∈ dz, σb ∈ du, t− u < σx ◦ θσb , σb < σa

)
+ Px

(
Xt ∈ dz, σI > t

)
=

∫ t

0

p̂
(I)
t−u(x, x)P̂x

(
X̂u ∈ dz

)
du.
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To conclude the assertion it is enough to observe that

Px
(
Xt ∈ dz, σa < t < σa + σx ◦ θσa , σa < σb

)
+ Px

(
Xt ∈ dz, σb < t < σb + σx ◦ θσb , σb < σa

)
= Px

(
Xt ∈ dz, σI < t < σI + σx ◦ θσI

)
.

�

Notice that we have already found the description of the process built on X,
which starts from x, and after exiting the interval I, is killed at the first hitting
of x. In other words, the new process is killed at the stopping time defined by
dxσI = inf{t > σI : Xt = x}. Such a construction is popular in mathematical
finance for modeling a continuous time barrier, and we name it here double-knock-
in construction after that. Till the exit from I, the process behaves like X and
after then becomes a new process killed at the first hitting of x. Since we assume
the infinite life-time of X, we may conclude the same property for one barrier and
obtain so called knock-in construction. We start defining a new process

X̂I→x
t := Xt1{t<dxσI }

+ ∂1{t≥dxσI }
, t ≥ 0,

where ∂ is the cemetery state. Clearly Px(X̂I→x
t ∈ dz) = Px(Xt ∈ dz, t < dxσI ).

Corollary 4.5. The process (X̂I→x) is under Px a strong Markov process with the
transition density (with respect to speed measure m) given by

p̂I→xt (x, z) =
(
gzx ∗ p̂(I)(x, x)

)
(t), t ≥ 0, z ∈ E. (4.5)

Proof : We find a candidate for the transition density

Px
(
Xt ∈ dz, dxσI > t

)
=
(∫ t

0

p̂
(I)
t−u(x, x)gzx(u)du

)
m(dz). (4.6)

Take s, t > 0. Since dxσI is a terminal stopping time, we find using Markov property
that

Px
(
X̂I→x
s ∈ dv, X̂I→x

t+s ∈ dz
)

= Px
(
Xs ∈ dv, s < dxσI , Xt+s ∈ dz, t+ s < dxσI

)
= Ex

(
1{Xs∈dv,s<dxσI }

PXs
(
Xt ∈ dz, t < dxσI

))
.

Using twice (4.6), we conclude that the last expression is equal to

Ex
(

1{Xs∈dv,s<dxσI }

(∫ t

0

p̂
(I)
t−u(Xs, Xs)g

z
Xs(u)du

)
m(dz)

)
=
(∫ t

0

p̂
(I)
t−u(v, v)gzv(u)du

)
m(dz)

(∫ s

0

p̂
(I)
s−u(x, x)gvx(u)du

)
m(dv)

= p̂I→xs (x, v)p̂I→xt (v, z)m(dz)m(dv).

�

Due to the infinite life-time, we may consider b at the right-end of the state
space (and a at the left-end) and by limiting σb →∞ (and σa →∞) we obtain two
strong Markov processes X̂a→x, X̂b→x (of knock-in type) killed at the first hitting
of x, just after hitting the single barrier. The formulas below generalize the Hunt
formula.
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Corollary 4.6. Let a < x < b. The transition densities of X̂a→x, X̂b→x are given
respectively by

p̂a→x(x, z) = p(x, z)− p(a, x) ∗ gxa ∗ gzx, z ∈ E

p̂b→x(x, z) = p(x, z)− p(b, x) ∗ gxb ∗ gzx, z ∈ E.

Proof : Follows from (4.5), taking b to the limit (and a respectively), and then using
Hunt formula. �

5. Excursion local time

One of the advantages of the choice of a diffusive setup is that in line with
Trotter’s approach, based on deterministic occupation time of a well measurable
set, we define the excursion local time. For any Borel non-negative f on E we
define a function (t, y) 7→ L̂t(y) by∫ t∧R

0

f(u(s))ds =

∫
E

f(y)L̂t(y)m(dy), t ≥ 0, u ∈ U.

In what follows, we assume that L̂t(y) is a right-continuous function of y and
continuous of t. Moreover, it is an additive functional, non-decreasing with respect
to t (see the discussion in Blumenthal, 1992, Chap. VI, Sect. 3). This is exactly
what one expects the path-wise local time inherits from the probabilistic one. By
identifying excursion space with a subspace of the canonical space, we may conclude
the probabilistic definition of the local time∫ t

0

f(X̂s)ds =

∫
E

f(y)L̂t(y)m(dy), t ≥ 0,

where m denotes the speed measure of X (see also Salminen et al., 2007, p.5).
To sum up, we assume that on the excursion space we are given a local time

defined as an additive functional on the canonical space. We apply counting excur-
sions to obtain a relation between excursion local time and the measure induced
by Laplace transforms of the local time of X. To establish the main result of this
section we will need two lemmas. Notice that Êx denotes the expectation taken
with respect to the excursion measure P̂x.

Lemma 5.1. Let t > 0. Then∫ t

0

P̂x(R > s)ds = Êx(R ∧ t) <∞. (5.1)

Proof : It is shown in Knight (1981) that P̂x(R > s) is the Laplace transform of
a measure µ on [0,∞) and absolutely continuous with a smooth and monotone
decreasing density. Thus ∫ t

0

P̂x(R > s)ds = t P̂x(R > t0)

for some t0 ∈ (0, t). �

Lemma 5.2. For fixed x, y ∈ E and γ > 0

Êxe−γL̂t(y) <∞. (5.2)
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Proof : Not losing generality assume that t = 1. Since we defined L̂1(y) by the
occupation time formula, we may easily conclude that

L̂1(y) = lim
ε↓0

1

m
(
(y − ε, y + ε)

) ∫ 1

0

1(y−ε,y+ε)(X̂s)ds.

Thus, by Fatou lemma

Êxe−γL̂1(y) ≤ lim
ε↓0

Êx exp
{
− γ

m
(
(y − ε, y + ε)

) ∫ 1

0

1(y−ε,y+ε)(X̂s)ds
}
.

By Jensen inequality and Fubini’s theorem we conclude that the last limit is
bounded by

lim
ε↓0

∫ 1

0

Êx exp
{
− γ

m
(
(y − ε, y + ε)

)1(y−ε,y+ε)(X̂s)
}
ds =: J.

Using again the form of entrance law for X̂s under P̂x we obtain

J = lim
ε↓0

∫ 1

0

∫
E

exp
{
− γ

m
(
(y − ε, y + ε)

)1(y−ε,y+ε)(z)
}
gzx(s)m(dz)ds

≤ lim
ε↓0

∫ 1

0

∫
E

gzx(s)m(dz)ds =

∫ 1

0

P̂x(R > s)ds,

which is finite due to Lemma 5.1. �

We are ready to formulate the main result of this section.

Theorem 5.3. For fixed γ > 0, x, y ∈ E and t > 0 define l̂x,y,γ(t) := Êxe−γL̂t(y)
and lx,y,γ(v) := Exe−γL

y
v . Assume that for every λ > 0∫ ∞

0

e−λt l̂x,y,γ(t)dt <∞. (5.3)

If µ̄lx,y,γ is the measure defined by

µ̄lx,y,γ([0, s)) := Ex
∫ s

0

e−γL
y
vdLxv , s ≥ 0, (5.4)

then

l̂x,y,γ ∗ µ̄lx,y,γ = 1 ∗ lx,y,γ . (5.5)

In particular, if l̂x,x,γ(t) := limy↓x l̂x,y,γ(t) and (5.3) holds for l̂x,x,γ(t) then

(1− lx,x,γ) ∗ l̂x,x,γ = γ ∗ lx,x,γ . (5.6)

Proof : Notice that l̂x,y,γ(t) is well defined for t > 0 due to Lemma 5.2. The proof
is based on counting excursions. Let λ, γ, t > 0. Define

I(t) := Ex
∑
τs−<t

e
−λτs−−γLyτs−

(∫ σx

0

e−λv−γL
y
vds
)
◦ θτs− ,

II(t) := Ex
∫ dt

t

e−λv−γL
y
vdv, III(t) := Ex

∫ t

0

e−λv−γL
y
vdv.

Again, by the master formula of excursions

I(t) =
(
Ex
∫ t

0

e−λv−γL
y
vdLxv

)∫
U

Fλ,γ(u)P̂x(du),
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where Fλ,γ(u) =
∫ R(u)

0
e−λv−γL̂v(y)dv. For v ≤ t we defined l̂x,y,γ(v) = Êxe−γL̂v(y).

Clearly
∫
U
Fλ,γ(u)P̂x(du) =

∫∞
0
e−λv l̂x,y,γ(v)dv. For any t > 0 we defined a σ–finite

measure µ̄lx,y,γ on [0, t) by (5.4), so by Fubini’s theorem

Ex
∫ t

0

e−λv−γL
y
vdLxv =

∫ t

0

e−λvµ̄lx,y,γ(dv).

Letting t→∞ and putting just written equalities together yield

lim
t→∞

I(t) =
[ ∫ ∞

0

e−λvµ̄lx,y,γ(dv)
][ ∫ ∞

0

e−λv l̂x,y,γ(v)dv
]
,

and the last is finite by assumption on the second term.

To compute II(t) we write by Markov property

II(t) = Exe−λt−γL
y
t EXt

∫ σx

0

e−λs−γL
y
sds.

Observe that

EXt
∫ σx

0

e−λs−γL
y
sds ≤ 1

λ

(
1− EXte−λσx

)
,

so we clearly see that limt→∞ II(t) = 0. Finally we observe that for lx,y,γ(v) =

Exe−γL
y
v we have by Fubini’s theorem

lim
t→∞

III(t) =

∫ ∞
0

e−λvlx,y,γ(v)dv.

Since I(t)− II(t) = III(t), we conclude that[ ∫ ∞
0

e−λvµ̄lx,y,γ(dv)
][ ∫ ∞

0

e−λv l̂x,y,γ(v)dv
]

=
1

λ

∫ ∞
0

e−λvlγ(v)dv,

and by Laplace transform argument

l̂x,y,γ ∗ µ̄lx,y,γ = 1 ∗ lx,y,γ .

By the proof of Lemma 5.2 y 7→ l̂x,y,γ(t) is bounded and l̂x,x,γ(t) := limy↓x l̂x,y,γ(t)
is well defined. By a standard calculus

Exe−λt−γL
x
t = 1− λEx

∫ t

0

e−λv−γL
x
vdv − γEx

∫ t

0

e−λve−γL
x
vdLxv ,

and since lx,x,γ(v) = Exe−γL
x
v we obtain

Ex
∫ t

0

e−λv−γL
x
vdLxv =

1

γ

[
1− Exe−λt−γL

x
t − λ

∫ t

0

e−λvlx,x,γ(v)dv
]
.

By assumption, (5.3) holds, so we have

lim
t→∞

I(t) =
1

γ

[
1− λ

∫ ∞
0

e−λvlx,x,γ(v)dv
][ ∫ ∞

0

e−λv l̂x,x,γ(v)dv
]
.

Hence, comparing I(t)− II(t) and III(t) with t→∞ yields

1

γ

[ ∫ ∞
0

e−λv(1− lx,x,γ(v))dv
][ ∫ ∞

0

e−λv l̂x,x,γ(v)dv
]

=
1

λ

∫ ∞
0

e−λvlx,x,γ(v)dv.
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Finally, by Laplace transform argument

(1− lx,x,γ) ∗
( 1

γ
l̂x,x,γ

)
= 1 ∗ lx,x,γ .

�

Example 5.4. We will give some examples of using Theorem 5.3 in case x = y. For
γ > 0 we have

(1− lx,x,γ) ∗ l̂x,x,γ = γ ∗ lx,x,γ , (5.7)

which is the Volterra integral equation of the first kind with respect to l̂x,x,γ . As
can be seen below, even in typical cases, equation (5.7) is quite complicated.

If X is a Brownian motion and x = 0 then the distribution of L0
t is well known

and

l0,0,γ(t) = e
γ2t
2

(
1− Erf

(
γ

√
t

2

))
, t ≥ 0,

where Erf denotes the error function Erf(z) = 2√
π

∫ z
0
e−u

2

du. Equation (5.7) takes
the form ∫ t

0

(
1− e

γ2(t−u)
2

(
1− Erf

(
γ

√
t− u

2

)))
l̂0,0,γ(u)du

= γ

∫ t

0

e
γ2u
2

(
1− Erf

(
γ

√
u

2

))
du,

which may be solved either by numerical methods (see Linz, 1969) or by the tech-
niques of deconvolution presented in Jakubowski and Wiśniewolski (2020).

The formula for lx,x,γ in case of X being a squared Bessel process with negative
index µ ∈ (−1, 0) and x = 0, is given in Jakubowski and Wiśniewolski (2020+,
Ex. 5.4)

l0,0,γ(t) = E−µ
(
− γκ(µ)Γ(−µ)t−µ

)
,

where Ea is the Mittag-Leffler function with parameter a and κ(µ) :=
(2µΓ(1 + µ))−1. Equation (5.7) takes the form∫ t

0

(
1− E−µ

(
− γκ(µ)Γ(−µ)(t− u)−µ

))
l̂0,0,γ(u)du

= γ

∫ t

0

E−µ
(
− γκ(µ)Γ(−µ)u−µ

)
du.

�
To formulate the next results we need some background on convolutions of mea-

sures. Recall that by A we denote the algebra of convolutions of locally integrable
functions on a non-negative half-line.

Definition 5.5. We say that a signed measure µ† is a quasi-inverse of the signed
measure µ if for any f ∈ A

f ∗ µ ∗ µ† = f ∗ µ+ f ∗ µ†.
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Proposition 5.6. For each σ–finite signed measure µ on B(R+) such that µ({0}) <
1 there exists an unique quasi-inverse signed measure µ†. Moreover

−1 ∗ µ† =
∑
n≥1

1 ∗ µ∗n.

Before the proof of Proposition 5.6 we separate out an useful lemma.

Lemma 5.7. Assume that µ, µ1, µ2 are σ–finite signed measures on B(R+) and
µ = µ1 + µ2. Assume that µ†1 exists and κ := µ2 − µ2 ∗ µ†1. If κ† exists, then µ†

exists and

1 ∗ µ† = 1 ∗ (k† + µ†1 − k† ∗ µ
†
1).

Proof : We follow the ideas of Lew (1972) for A. It is well known that signed mea-
sures on B(R+) constitute Banach algebra with convolution operation. Moreover,
if δ denotes the neutral element of unitization of A then for each σ–finite signed
measure µ1, for which µ

†
1 exists, the element 1∗ (δ−µ1) has an associated uniquely

determined element 1 ∗ (δ − µ1)−1 which satisfies

1 ∗ 1 ∗ (δ − µ1) ∗ (δ − µ1)−1 = 1 ∗ 1,

or simply

1 ∗ (δ − µ1) ∗ (δ − µ1)−1 = 1.

Indeed, (δ − µ1)−1 is equal to δ − µ†1, since one may easily check that

1 ∗ (δ − µ1) ∗ (δ − µ†1) = 1.

Moreover, if µ†1 and µ†2 exist then

1 ∗ (δ − µ1)−1 ∗ (δ − µ2)−1 = 1 ∗ (δ − µ†1) ∗ (δ − µ†2).

So if µ = µ1 + µ2, and we may define κ := µ2 − µ2 ∗ µ†1, then we observe that
µ2 = κ ∗ (δ − µ1). Observe further that

1 ∗ (κ† + µ†1 − κ† ∗ µ
†
1) = −1 ∗ (δ − µ†1) ∗ (δ − κ†) + 1

= −1 ∗ (δ − µ1)−1 ∗ (δ − κ)−1 + 1

= −1 ∗ (δ − µ1 − κ ∗ (δ − µ1))−1 + 1 = −1 ∗ (δ − µ)−1 + 1,

so it follows that µ† := k† + µ†1 − k† ∗ µ
†
1 is the desired quasi-inverse element. �

Lemma 5.8. If µ is a σ–finite measure, then

1 ∗ µ ∗ µ† = 1 ∗ µ+ 1 ∗ µ† ⇔ ∀f ∈ A f ∗ µ ∗ µ† = f ∗ µ+ f ∗ µ†.

Proof : Follows by multiplying the LHS in sense of convolution by f and the RHS
by 1 respectively, and by the fact that A has no 0-divisors. �

Proof : (of Proposition 5.6) We adopt the proof of Lemma 1 in Lew (1972) to the
setup of σ–finite measures. By Lemma 5.7, for a signed measure µ it is enough
to find decomposition µ = µ1 + µ2 such that µ†1 exists and for κ := µ2 − µ2 ∗ µ†1
the element κ† exists as well. Not loosing generality assume that µ is a σ–finite
measure. Due to hypothesis of the theorem we may choose a strictly positive a
such that (1 ∗ µ)(a) < 1. Set µ1 := µ(· ∩ [0, a)). Clearly

∑
n≥1 1 ∗ µ∗n1 converges

in A, so we may define −µ†1 as a measure induced by the last sum or simply by
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an identity 1 ∗ (−µ†1) =
∑
n≥1 1 ∗ µ∗n1 . If we set µ2 = µ − µ1, then µ2 vanishes on

any Borel subset of [0, a) and so by the definition of convolution of measures µ∗n2
vanishes on any Borel subset of [0, na) and so does κ∗n for κ = µ2 − µ2 ∗ µ†1. As
a result we may define −µ†2 and −κ† as measures induced by

∑
n≥1 1 ∗ µ∗n2 and∑

n≥1 1 ∗ κ∗n respectively, or simply by identities 1 ∗ (−µ†2) =
∑
n≥1 1 ∗ µ∗n2 and

1 ∗ (−κ†) =
∑
n≥1 1 ∗ κ∗n. �

One more lemma will be important in the sequel.

Lemma 5.9. Assume that y, f ∈ A and µ is a σ–finite measure on non-negative
half-line. If y = f + y ∗ µ, then y = f − f ∗ µ†.

Proof : From assumption y solves a Volterra integral equation of the second kind
with respect to σ–finite measure. If there exists w ∈ A such that w = f + w ∗ µ
then w = y. Indeed, we would then have

w ∗ y = f ∗ y + y ∗ w ∗ µ = f ∗ w + y ∗ w ∗ µ,
so the assertion about uniqueness follows from the fact that A has no 0-divisors.
To conclude the proof we directly check that y = f − f ∗ µ† satisfies the integral
equation. Indeed,

f + y ∗ µ = f + (f − f ∗ µ†) ∗ µ = f + f ∗ µ− f ∗ µ† ∗ µ = f − f ∗ µ† = y,

where we used Lemma 5.8. �

We use the notion of convolution of measures to describe the excursion local
time. For this recall that for lx,x,γ(v) = Exe−γL

x
v we proved under assumptions of

Theorem 5.3 that (1− lx,x,γ) ∗ l̂x,x,γ = γ ∗ lx,x,γ .

Proposition 5.10. Fix γ > 0. Assume that (5.3) holds for y = x. Assume that
there exist a signed σ–finite measure µ̂ and a function α ∈ A on [0,∞) such that
α(0) = −1 and such that lx,x,γ has the following representation

lx,x,γ = (1 + α) ∗ µ̂− α. (5.8)

Then

(1 + α) ∗ l̂x,x,γ = γ ∗ lx,x,γ + γ ∗ lx,x,γ ∗
∑
n≥1

µ̂∗n. (5.9)

Proof : For α and µ̂ as in the hypothesis of the theorem, the LHS of formula (5.6)
may be rewritten in the following form

(1− lx,x,γ) ∗ l̂x,x,γ = 1 ∗ l̂x,x,γ − l̂x,x,γ ∗
(

(1 + α) ∗ µ̂− α
)

= (1 + α) ∗ l̂x,x,γ − (1 + α) ∗ l̂x,x,γ ∗ µ̂,
and comparing the last with RHS of (5.6) yields

(1 + α) ∗ l̂x,x,γ − (1 + α) ∗ l̂x,x,γ ∗ µ̂ = γ ∗ lx,x,γ .

The last is integral equation with respect to (1 + α) ∗ l̂x,x,γ as in Lemma 5.9, so

(1 + α) ∗ l̂x,x,γ = γ ∗ lx,x,γ − γ ∗ lx,x,γ ∗ (µ̂)†

= γ ∗ lx,x,γ + γ ∗ lx,x,γ ∗
∑
n≥1

µ̂∗n,

where in the last equality we used Proposition 5.6. �
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Below we present some possible choices of α and µ̂ for decomposition (5.8).
We assume that assumptions of Theorem 5.3 are satisfied. The first example is
theoretic.

Example 5.11. For λ > 0 set α(t) := −e−λt and assume that t 7→ lx,x,γ(t) is
differentiable on (0,∞). Define ∆λ,γ(t) := eλtlx,x,γ(t). Then decomposition (5.8)
holds, if

µ̂([0, t)) =
1

λ
e−λt

∂∆λ,γ(t)

∂t
, t > 0, (5.10)

defines a signed σ–finite measure. Indeed, taking α(t) := −e−λt equality (5.8) may
be rewritten as

lx,x,γ(t) = µ̂([0, t))−
∫ t

0

e−λ(t−u)µ̂(du) + e−λt,

so

∆λ,γ(t) = eλtµ̂([0, t))−
∫ t

0

eλuµ̂(du) + 1.

As a result
∂∆λ,γ(t)

∂t
= λeλtµ̂([0, t)),

which due to assumptions on ∆λ,γ makes µ̂ well defined.

The second example is constructive. The measure µ̂ is chosen upfront.

Proposition 5.12. Let µ̂ be the Lebesgue measure and j(t) := t. Then α defined
by

α := j − lx,x,γ + (j − lx,x,γ) ∗
∑
n≥1

µ̂∗n, (5.11)

satisfies the hypothesis of Proposition 5.10.

Proof : Assuming that µ̂ is given, we rewrite condition (5.8) as an equation with
respect to α. Hence

α = 1 ∗ µ̂− lx,x,γ + α ∗ µ̂ = j − lx,x,γ + α ∗ µ̂,

so to obtain (5.11) we use Lemma 5.9. �

Example 5.13. Since j − lx,x,γ is locally integrable and µ̂ is the Lebesgue measure,
we have for any t ≥ 0

α(t) = t− lx,x,γ(t) +

∞∑
n=1

∫ t

0

(t− u− lx,x,γ(t− u))
un

n!
du. (5.12)

For Itô–McKean diffusions the form of lx,x,γ is given explicitly in terms of the
transition density:

lx,x,γ(t) = 1 + 1 ∗
∞∑
n=1

(−γ)np∗n(x, x)(t).

As a result, the terms of the RHS of (5.12) are given explicitly and give the form
of the Volterra integral equation (5.9) for l̂x,x,γ .
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6. Non-linear excursion formula

The master formula of excursion although surprisingly universal and useful for
the theory, is actually a linear a transformation of some appropriately measurable
process (depending on previsible or optional setup). The naturally raised question
is about non-linear versions of the formula. Actually (to best of our knowledge)
the known non-linear version is the exponential one (see Revuz and Yor, 1991, Ch.
XII, Prop. 1.12). In this section we present a new non-linear version of excursion
formula for additive functionals. The structure of the new formula reminds the
structure of the linear master formula, where the Markovian kernel from the linear
formula is replaced by a more complicated but still a Markovian counterpart.

Let us introduce some auxiliary notation. For a continuous additive R+– valued
functional (At) associated with Itô–McKean diffusion X, define

it := Aσx ◦ θt, t ≥ 0. (6.1)

By some standard arguments one may conclude that iτxs− for τxs− = inf{v > 0 : Lxv ≥
t} is well defined and previsible (left-continuous). Recall that by dxt we denote the
first hitting time of x by the process X, after t.

Definition 6.1. (Hypothesis A) We say that A satisfies hypothesis A if
(1) there exists a density with respect to Lebesgue measure, ḡ of Aσx , that is

Pw(Aσx ∈ dz) = ḡ(w, z)dz,

and for any fixed z the map w 7→ ḡ(w, z) is measurable.
(2) there exists a kernel φt,y representing the distribution of the pair (At, Adxt )

on condition {Xt = y}:

Px
(
At ∈ dv,Adxt ∈ dk

∣∣Xt = y
)

= φt,y(dv, k)dk,

and (t, y) 7→ φt,y(dv, k) is measurable for any fixed non-negative k.

We are ready to formulate the result of this section, namely the non-linear ex-
cursions formula for non-negative, continuous additive functionals of X.

Theorem 6.2. (Non-linear excursion formula) Let t > 0, x ∈ E be fixed and h
be a Borel, positive or bounded function on R+. Under hypothesis A there exist a
kernel Qt,xs such that

Exh
( ∑
τs−<t

iτxs−

)
= Ex

∫ t

0

∫ ∞
0

h(k)Qt,xt−u(dk)dLxu. (6.2)

The kernel is defined by

Qt,xs (dk) = ÊxΨt,x(X̂s, dk), Ψt,x(y, dk) = Px
(
Adxt ∈ dk|Xt = y

)
. (6.3)

Moreover, for z ∈ E define a kernel Q̄t,x,zs (dk) = EzΨt,x(X̂
(x)
s , dk) where X̂(x)

denotes the canonical process killed at first hitting of x (not be confused with ex-
cursion process), and by µs denote the entrance law of excursion process X̂, that
is µs(dk) = P̂x

(
X̂s ∈ dk

)
. Then the kernel (Qt,xs ) is Markovian in the following

sense: for any u, s > 0 we have Qt,xs+u = µsQ̄
t,x,·
u , which formally means

Qt,xs+u(dk) =

∫
E

Q̄t,x,zu (dk)µs(dz). (6.4)
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Proof : It is quite clear that
∑
τxs−<t

iτxs− = it+At, so for a chosen h Borel, positive
or bounded. Denote I(t) =

∑
τxs−<t

iτxs− . We have by Markov property

Exh
(
I(t)

)
= Exh

(
At +Aσx ◦ θt

)
= Ex

∫ ∞
0

h(At + z)ḡ(Xt, z)dz

=

∫ ∞
0

∫ ∞
0

∫
E

h(v + z)ḡ(y, z)Px
(
Xt ∈ dy,At ∈ dv

)
dz

=

∫ ∞
0

h(k)

∫ k

0

ḡ(y, k − v)Px
(
Xt ∈ dy,At ∈ dv

)
dk.

Recall that by occupation time formula for local time we have ExLxt =
∫ t
0
pu(x, x)du,

and since p(x, y) = p(y, x) and p(y, x) = p(x, x) ∗ gyx we obtain

pt(x, y) = Ex
∫ t

0

gyx(t− u)dLxu.

As a result, by Fubini’s theorem

Exh
(
I(t)

)
(6.5)

= Ex
∫ t

0

∫ ∞
0

h(k)
[ ∫

E

∫ k

0

ḡ(y, k − v)Px
(
At ∈ dv

∣∣Xt = y
)
gyx(t− u)m(dy)

]
dk dLxu

Clearly∫ k

0

ḡ(y, k − v)Px
(
At ∈ dv

∣∣Xt = y
)

=

∫ k

0

Ex
[
1{At∈dv}ḡ(Xt, k − v)

∣∣Xt = y
]
.

By Markov property

ḡ(Xt, z)dz = Ex
[
Aσx ◦ θt ∈ dz

∣∣Ft].
By hypothesis A

Px
(
At ∈ dv,Adxt ∈ dk

∣∣Xt = y
)

= φt,y(dv, k)dk,

so recalling that Adxt = At +Aσx ◦ θt we have[ ∫ k

0

ḡ(y, k − v)Px
(
At ∈ dv

∣∣Xt = y
)]
dk =

[ ∫ k

0

φt,y(dv, k)
]
dk

= Px
(
At ≤ k,Adxt ∈ dk

∣∣Xt = y
)
.

By the definition of dxt the last probability is equal to Px
(
Adxt ∈ dk

∣∣Xt = y
)
which

is exactly what we denote by Ψt,x(y, dk). Thus, the first integrand in the square
bracket of (6.5) may be replaced by Ψt,x(y, dk), and we obtain

Exh
(
I(t)

)
= Ex

∫ t

0

∫ ∞
0

h(k)
[ ∫

E

Ψt,x(y, dk)gyx(t− u)m(dy)
]
dk dLxu.

It was recalled several times in this paper that gyx(u)m(dy) = P̂x(X̂u ∈ dy), so

Exh
(
I(t)

)
= Ex

∫ t

0

∫ ∞
0

h(k)ÊxΨt,x(X̂t−u, dk)dk dLxu

= Ex
∫ t

0

∫ ∞
0

h(k)Qt,xt−u(dk)dLxu.

Since we are in the diffusive setup the kernel Qt,xu is measurable directly from the
definition. To see that it is Markovian in the above specific sense we recall that if
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µs is the entrance law of excursion process and P̂(x)
u denotes the semigroup of the

process arising from X and killed at x, we have µu+s = µuP̂(x)
s for any positive s

and u. So we write

Qt,xs+u(dk) = ÊxΨt,x(X̂s+u, dk) =

∫
E

Ψt,x(z, dk)µs+u(dz)

=

∫
E

∫
E

Ψt,x(z, dk)p̂(x)s (y, z)m(dz)µu(dy)

=

∫
E

µu(dy)
(∫

E

Ψt,x(z, dk)p̂(x)s (y, z)m(dz)
)

=

∫
E

µu(dy)Q̄t,x,ys (dk).

This finishes the proof. �

Example 6.3. For Itô–McKean diffusion X and x = 0 recall the setup of Salminen
et al. (2007). Take At = t. It follows from formula Salminen et al. (2007, (6)) that
hypothesis A is satisfied. Moreover,

P0(Xt ∈ dy, d0t ∈ dk) =
(∫ t

0

pu(0, 0)gy0 (t− u)du
)
gy0 (k − t)dk m(dy)

= pt(y, 0)gy0 (k − t)dk m(dy),

so that

Ψt,0(y, dk) = gy0 (k − t)dk.

We obtain

Qt,0s (dk) =
(∫

E

gy0 (k − t)gy0 (s)m(dy)
)
dk.

References

Alili, L., Patie, P., and Pedersen, J. L. Representations of the first hitting time
density of an Ornstein-Uhlenbeck process. Stoch. Models, 21 (4), 967–980 (2005).
MR2179308.

Blumenthal, R. M. Excursions of Markov processes. Probability and its Ap-
plications. Birkhäuser Boston, Inc., Boston, MA (1992). ISBN 0-8176-3575-0.
MR1138461.

Bogus, K. and Małecki, J. Sharp estimates of transition probability density for
Bessel process in half-line. Potential Anal., 43 (1), 1–22 (2015). MR3361787.

Borodin, A. N. and Salminen, P. Handbook of Brownian motion—facts and formu-
lae. Probability and its Applications. Birkhäuser Verlag, Basel, second edition
(2002). ISBN 3-7643-6705-9. MR1912205.

Byczkowski, T., Jakubowski, J., and Wiśniewolski, M. On functionals of excursions
for Bessel processes with negative index. Studia Math., 246 (3), 217–231 (2019).
MR3883303.

Friedman, A. and Shinbrot, M. Volterra integral equations in Banach space. Trans.
Amer. Math. Soc., 126, 131–179 (1967). MR206754.

Getoor, R. K. Excursions of a Markov process. Ann. Probab., 7 (2), 244–266 (1979).
MR525052.

http://www.ams.org/mathscinet-getitem?mr=MR2179308
http://www.ams.org/mathscinet-getitem?mr=MR1138461
http://www.ams.org/mathscinet-getitem?mr=MR3361787
http://www.ams.org/mathscinet-getitem?mr=MR1912205
http://www.ams.org/mathscinet-getitem?mr=MR3883303
http://www.ams.org/mathscinet-getitem?mr=MR206754
http://www.ams.org/mathscinet-getitem?mr=MR525052


376 M. Wiśniewolski

Gripenberg, G., Londen, S.-O., and Staffans, O. Volterra integral and functional
equations, volume 34 of Encyclopedia of Mathematics and its Applications. Cam-
bridge University Press, Cambridge (1990). ISBN 0-521-37289-5. MR1050319.

Hamana, Y. The probability distributions of the first hitting times of radial
Ornstein-Uhlenbeck processes. Studia Math., 251 (1), 65–88 (2020). MR4042415.

Itô, K. Poisson point processes attached to Markov processes. In Proceedings of
the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ.
California, Berkeley, Calif., 1970/1971), Vol. III: Probability theory, pp. 225–239
(1972). MR0402949.

Itô, K. and McKean, H. P., Jr. Diffusion processes and their sample paths. Springer-
Verlag, Berlin-New York (1974). MR0345224.

Jakubowski, J. and Wiśniewolski, M. A convolution formula for the local time of an
Itô diffusion reflecting at 0 and a generalized Stroock-Williams equation (2020+).
To appear in Bernoulli.

Jakubowski, J. and Wiśniewolski, M. Volterra integral equations of the first kind
and applications to linear diffusions. Trans. Amer. Math. Soc., 373 (10), 7455–
7472 (2020). MR4155213.

Kent, J. T. Eigenvalue expansions for diffusion hitting times. Z. Wahrsch. Verw.
Gebiete, 52 (3), 309–319 (1980). MR576891.

Knight, F. B. Characterization of the Levy measures of inverse local times of
gap diffusion. In Seminar on Stochastic Processes, 1981 (Evanston, Ill., 1981),
volume 1 of Progr. Prob. Statist., pp. 53–78. Birkhäuser, Boston, Mass. (1981).
MR647781.

Le Gall, J.-F. Brownian excursions, trees and measure-valued branching processes.
Ann. Probab., 19 (4), 1399–1439 (1991). MR1127710.

Lew, J. S. On linear Volterra integral equations of convolution type. Proc. Amer.
Math. Soc., 35, 450–456 (1972). MR308699.

Linz, P. Numerical methods for Volterra integral equations of the first kind. Com-
put. J., 12, 393–397 (1969). MR253577.

Lipton, A. and Kaushansky, V. On the First Hitting Time Density of an Ornstein-
Uhlenbeck Process. ArXiv Mathematics e-prints (2018). arXiv: 1810.02390.

Mijatović, A. and Pistorius, M. Continuously monitored barrier options under
Markov processes. Math. Finance, 23 (1), 1–38 (2013). MR3015232.
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