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1. Introduction

T In this article, we investigated the existence of the (L2(Rn), L2(Rn))-random attractor and the
(L2(Rn), Lp(Rn))-random attractor for the following semilinear reaction-diffusion equation with

distribution derivatives and multiplicative noise on Rn:

du + (λu− ∆u)dt = ( f (x)− g(u) + Dj f j)dt + bu ◦ dW(t); in R+ ×Rn (1)

with the initial value condition
u(x, 0) = u0(x); x ∈ Rn , (2)

where −∆ is the Laplacian operator with respect to the variable x ∈ Rn, u = (x, t) is a real function of
x ∈ Rn and t > τ, uτ(x) ∈ L2(Rn), λ and b are non-negative constants, Dj =

∂
∂xj

is distribution derivatives,

f j, f ∈ L2(Rn) (j=1,2,....,n)(n ≥ 3), W(t) is a two-sided real-valued Wiener process on a probability space
(Ω,F , P), (where Ω = {ω ∈ C(R,R) : ω(0) = 0}, F is the Borel σ -algebra induced by the compact-open
topology of Ω, and P is the corresponding Wiener measure on F ), ◦ denotes the Stratonovich sense in the
stochastic term. We identify ω(t) with W(t), i.e., is a Wiener process defined on a standard probability space
(Ω,F , P), where Ω = {ω ∈ C(R,R) : ω(0) = 0}, and F is the Borel σ -algebra induced by the compact-open
topology of Ω and P is the corresponding Wiener measure on F . And g is a Lipschitz function which satisfies
the following conditions:

g(0) = 0, (g(s1)− g(s2))(s1 − s2) ≥ α0|s1 − s2|2 ∀s1, s2 ∈ R, (3)

β2|s|p − δ2|s|2 ≤ g(s)s ≤ β1|s|p + δ1|s|2, 2 < p < ∞, (4)
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where α0, β1, β2, β3, δ1and δ2 are non-negative constants and

δ2 < λ. (5)

A random attractor of a random dynamical system is a measurable and compact invariant random set
attracting all the orbits. The notion of a random attractor is very useful for many infinite-dimensional random
dynamical systems (RDS), see [1,2].

Many authors have studied the existence of a random attractor for an RDS. For instance, Crauel and
Flandoli in [1] introduced the notion of a random attractor and obtained a general theorem on the existence of
a random attractor for the RDS. Their theorem has been successfully applied to the stochastic reaction-diffusion
equations and the stochastic Navier-Stokes equations.

The existence of random attractors without distribution derivatives has been studied by several authors,
see [2–10] and the reference therein. Notice that the partial differential equations (PDEs) studied in these
literatures are all defined on the bounded domains. In the case of unbounded domains, the existence of random
attractors without distribution derivatives was established for the stochastic reaction-diffusion equation with
additive noise in [11], and with multiplicative noise in [12].

Recently, in case of distribution derivatives on unbounded domains, the existence of global attractors was
established for the deterministic reaction-diffusion equation with distribution derivatives in [13,14], and for
the stochastic reaction-diffusion equation with distribution derivatives and additive noise in [15], and with
multiplicative noise in [16].

Furthermore, there are no results on random attractors for stochastic reaction-diffusion equation with
distribution derivatives and multiplicative noise on unbounded domain in (L2(Rn), Lp(Rn)). It is worth
mentioning that Sobolev embedding is not compact on domains of infinite volume (see [17]). This leads to a
major obstacle for proving the existence of attractors for PDEs on unbounded domains. For some deterministic
equations, the difficulty caused by the unboundedness of domains can be overcome by the energy equation
approach. The energy equation method was developed by Ball in [18] and used by many authors (see, for
example, [19–22]). Under certain circumstances, the tail-estimates method can be used to deal with the problem
caused by the unboundedness of domains (see [11,23,24]). In this article, we will use the idea of uniform
estimates on the tail of solutions to study the existence of a random attractor of the stochastic reaction-diffusion
equation with distribution derivatives and multiplicative noise on unbounded domain.

This article is organized as follows. In Section 2, we recall some basic concepts and properties for general
random dynamics system. In Section 3, we provide some basic settings about Equation (1) and show that it
generates a random dynamical system on L2(Rn). In the last section, firstly we prove the uniform estimates
of solutions which include the uniform estimates on the tails of solutions. Then establish the asymptotic
compactness of the solution operator by given uniform estimates on the tails of solutions and prove the
existence of a random attractor.

In the sequel, we use ‖ · ‖p be the norm of Lp(Rn)(p ≥ 1), |v| the modular of v, m(e), sometimes we also
write it as |e| the Lebesgue measure of e ⊂ Rn,Rn(|v| ≥ M̃) , {x ∈ Rn | |v(x)| ≥ M̃}, and C an arbitrary
positive constant, which may be different from line to line and even in the same line, and ‖ · ‖, (·, ·) to denote
the norm and inner product of L2(Rn), respectively.

2. Preliminaries and abstract results

2.1. Preliminaries

As mentioned in the introduction, our main purpose is to prove the existence of the
(L2(Rn), Lp(Rn))-random attractor. For that matter, first, we will recapitulate basic concepts related to
random attractors for stochastic dynamical systems. The reader is referred to [3,25] for more details.

Let (X, ‖ · ‖X) be separable Hilbert space with the Borel σ-algebra B(X). Let (Ω,F , P) be a probability
space.

Definition 1. (Ω,F , P, (ϑt)t∈R) is called a metric dynamical system if ϑ : R × Ω → Ω is (B(R) ×
F ,F )-measurable, ϑ0 is the identity on Ω, ϑs+t = ϑt ◦ ϑs for all s, t ∈ R and ϑtP = P for all t ∈ R.
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Definition 2. A continuous random dynamical system (RDS) on X over a metric dynamical system
(Ω,F , P, (ϑt)t∈R) is a mapping

φ : R+ ×Ω× X −→ X, (t, ω, x) 7→ φ(t, ω, x),

which is (B(R+)×F ×B(X),B(X))- measurable and satisfies, for P-a.e. ω ∈ Ω.

1. φ(0, ω, ·) is the identity on X,
2. φ(t + s, ω, ·) = φ(t, ϑsω, ·) ◦ φ(s, ω, ·) for all t, s ∈ R+,
3. φ(t, ω, ·) : X → X is continuous for all t ∈ R+.

Hereafter, we always assume that φ is continuous RDS on X over (Ω,F , P, (ϑt)t∈R).

Definition 3. A set-valued mapping {D(ω)} : Ω→ 2X , ω → D(ω), is said to be a random set if the mapping
ω 7→ d(u, D(ω)) is measurable for every u ∈ X. If D(ω) is also closed (compact) for each ω ∈ Ω, {D(ω)} is
called a random closed(compact) set. A random set {D(ω)} is said to be bounded if there exist u0 ∈ X and a
random variable R1(ω) > 0 such that D(ω) ⊂ {u ∈ X : ‖u− u0‖X ≤ R1(ω)} for all ω ∈ Ω.

Definition 4. A random bounded set {D(ω)} is called tempered provided for P-a.e, ω ∈ Ω,
limt→+∞ e−βtd(D(ϑ−tω)) = 0 for all β > 0, where d(D) = sup{‖b‖X : b ∈ D}.

Definition 5. Let D be a collection of random subset of X and {K(ω)} ∈ D. Then {K(ω)} is called a random
absorbing set for φ in D for every D ∈ D and P-a.e, ω ∈ Ω, there exist t0(ω) such that φ(t, ϑ−tω, D(ϑ−tω)) ⊆
K(ω) for all t ≥ t0(ω).

Definition 6. A random set {K1(ω)} is said to be a random attracting set if for every tempered random set
{D(ω)}, and P-a.e, ω ∈ Ω, we have

lim
t→+∞

dH(φ(t, ϑ−tω, D(ϑ−tω), K1(ω))) = 0,

where dH is the Hausdorff semi-distance given by dH(E, F) = supu∈E infv∈F ‖u− v‖X for every E, F ⊂ X.

Definition 7. Let D be the set of all random tempered sets in X. Then φ is said to be asymptotically compact
in X if for P-a.e. ω ∈ Ω, {φ(tn, ϑ−tn ω, Xn)}∞

n=1 has a convergent subsequence in X whenever tn → ∞, and
Xn ∈ B(ϑ−tn ω) with {B(ω)} ∈ D.

Definition 8. A random compact set {A(ω)} is said to be a random attractor if it is a random attracting set
and φ(t, ω,A(ω)) = A(ϑ−tω) for P-a.e. ω ∈ Ω and all t ≥ 0.

Definition 9. Let φ be a continuous random dynamical system on X over (Ω,F , P, (ϑt)t∈R). If there is a closed
random tempered absorbing set {K(ω)} of φ and φ is asymptotically compact in X, then {A(ω)} is a random
attractor of φ, where

A(ω) =
⋂
t>0

⋃
τ≥t

φ(τ, ϑ−τω, K(ϑ−τω)), ω ∈ Ω.

Moreover, {A(ω)} is the unique attractor of φ.

Theorem 1. [13] Let X be a Banach space and {φ(t)}t≥0 be a continuous random dynamical system on X. Then
{φ(t)}t≥0 has a random attractor in X provided that the following conditions hold:

1. {φ(t)}t≥0 has a bounded absorbing set in X.
2. For any bounded subset B(ω) of X, we have κ(φ(t)B(ω))→ 0 as t→ ∞.

2.2. Abstract results

In the following, we will give some simple properties of bounded sets in Lp(Rn), which are useful for
establishing the asymptotic compactness of the random dynamical system in Lp(Rn).
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Lemma 1. [26,27] Suppose a RDS φ has a bounded absorbing set B(ω) in Lp(Ω). Then for P-a.s. ω ∈ Ω, ζ > 0 and
bounded B ⊂ Lp(Ω), there exist T̃ = T̃(B, ω) and M̃ = M̃(ζ, ω) such that

m(Ω(|φ(t, ϑ−tω)u| ≥ M̃)) < ζ for any u ∈ B and t ≥ T.

Lemma 2. [13,28] Let B be a bounded subset in Lp(Ω)(p ≥ 1) and ζ > 0 be arbitrary. Assume that there is an
M̃ = M̃(B, ζ) such that for every v ∈ B,

∫
Ω(|v|≥M̃)(|v| − M̃)P ≤ ζ, then we have

∫
Ω(|v|≥2M̃)

|v|p ≤ 2p+1ζ for all v ∈ B.

Lemma 3. [13] Let B ⊂ L2(Rn) ∩ Lp(Rn)(p ≥ 2) and be bounded in both L2(Rn) and Lp(Rn). Then for every
ζ > 0, B has a finite ζ-net in Lp(Rn) if there exists a positive constant M̃ = M̃(ζ, ω) which depends on ζ, such that

(i) B has a finite (3M̃)(2−p)/2(ζ/2)p/2 − net in L2(Rn).

(ii)
( ∫

Rn(|v|≥M̃)
|v|pdx

)1/p
< 2−(2p+2)/p ζ for every v ∈ B. (6)

Motivated by Theorem 1, we will provide a simple and convenient criterion for the existence of random
attractors in Rn, which will be used later:

Corollary 1. [13,24,29] Let {φ(t)}t≥0 be a continuous random dynamical system on L2(Rn). Then {φ(t)}t≥0 has a
(L2(Rn), L2(Rn))-random attractors if and only if

1. {φ(t)}t≥0 has a (L2(Rn), L2(Rn))-bounded absorbing set.
2. For any ζ > 0, there exist Rζ > 0 and Tζ > 0, such that

∫
Rn\B(ω)(0,R) |φ(t)v0|2dx < ζ for any v0 ∈ B0,

provided that t ≥ Tζ and R ≥ Rζ .
3. For any R > 0 and any bounded set B ⊂ Y, we have κ(φ(t)B|B(0,R)) → 0 as t → ∞, where B(0, R) = {x ∈

Rn : |x| < R}, φ(t)B|B(0,R) = {φ(t)v0|B(0,R) : v0 ∈ B} and v(x)|B(0,R) =

{
v(x) if |x| < R,

0 others wise.

As mentioned ahead, it is very hard to obtain the continuity of the random dynamical system in
Lp(Rn), and the norm-to-weak continuity is also not available since there is no nested relation between
L2(Rn) and Lp(Rn) for p 6= 2. So it is very difficult to obtain the invariance of the random attractor by the
continuity or norm-to-weak continuity of the random dynamical system. In this paper, we will establish
the invariance of the (L2(Rn), Lp(Rn))-random attractor by the continuity of {φ(t)}t≥0 in L2(Rn) and the
asymptotic compactness in Lp(Rn), see Theorem 2. For that matter, we give the convenient lemma as
following.

Lemma 4. [13] Let X and Y be two Banach spaces with norm ‖ · ‖X and ‖ · ‖Y, respectively, B ⊂ D(X) ∩D(Y).

Assume that {xn}∞
n=1 ⊂ B and xn

‖·‖X−→ x0, xn
‖·‖Y−→ y0, x0, y0 ∈ B(ω). Then x0 = y0, where D(X) denotes the

collection of all bounded subsets of X.

Theorem 2. [27] Let φ(t, ω) be a quasi-continuous random dynamical system on Lp(Rn) over an ergodic system
(Ω,F , P; ϑt). suppose that φ has a (L2(Rn), L2(Rn))-random attractor. Then φ has a (L2(Rn), Lp(Rn))-random
attractor provided that the following condition hold:

1. φ has a (L2(Rn), Lp(Rn))-bounded absorbing set B0(ω),
2. φ is (L2(Rn), Lp(Rn))-omega-limit compact, that is for any bounded non-random set B ⊂ Lp(Rn), we have

lim
T→∞

κ(
⋃

t≥T
φ(t, ϑ−tω)B) = 0, P-a.s. ω ∈ Ω . (7)

Under the assumptions in Theorem 2, we will prove one of the random attractors is

A(ω) =
⋃

B⊂Lp(Rn)

A(B, ω) (8)



Open J. Math. Sci. 2020, 4, 126-141 130

where the union is taken over all bounded subsets of Lp(Rn), and A(B, ω) is the weakly sequence omega-limit set, that
is,

A(B, ω) =
⋂

T≥0

⋃
t≥T

φ(t, ϑ−tω)BWS (9)

for any bounded set B ⊂ Lp(Rn).
Using the same method as in [28], one can prove that if φ is omega-limit compact then A(B, ω) has the following

character:
x ∈ A(B, ω) iff ∃xn ∈ B, tn → ∞ such that φ(tn, ϑ−tn ω)xn ⇀ x . (10)

Remark 1. [13,27] From the proof of the Theorem 2, obviously, we have that the (L2(Rn), L2(Rn))-random
attractor coincides with the (L2(Rn), Lp(Rn))-random attractor.

Secondly, going by the idea of [30], we give a criterion or detailed scheme for verifying the existence of
the (L2(Rn), Lp(Rn))-random attractor, which is very useful in our later discussion.

Theorem 3. Let {φ(t)}t≥0 be a continuous random dynamical system on L2(Rn) and a random dynamical system on
Lp(Rn), where 2 ≤ p < ∞. suppose that {φ(t)}t≥0 has a (L2(Rn), L2(Rn))-random attractor. Then {φ(t)}t≥0 has a
(L2(Rn), Lp(Rn))-random attractor provided that the following condition hold:

1. {φ(t)}t≥0 has a (L2(Rn), Lp(Rn))-bounded absorbing set B0(ω),
2. For any ζ > 0 and any bounded (with respect to ‖ · ‖2) subset B, there exist positive constants M̃ =

M̃(ζ, B(ω), ω) and T̃ = T̃(ζ, B(ω), ω), such that∫
Rn(|φ(t)v0|≥M̃)

|φ(t)v0|p < 2−(2p+2)/ζ p
for any v0 ∈ B(ω) and t ≥ T̃.

Proof. Using Theorem 2, we only need to verify that {φ(t)}t≥0 is (L2(Rn), Lp(Rn))-asymptotically compact.
As in Theorem 2, denote the (L2(Rn), L2(Rn))-bounded absorbing set by B2(ω) and let Bp(ω) = B0(ω) ∩
B2(ω). Then it is sufficient to prove that

for any xn ∈ Bp(ω), tn → ∞, {φ(tn)xn}∞
n=1 is precompact in Lp(Rn) , (11)

which is equivalent to prove that for any ζ > 0, {φ(tn)xn}∞
n=1 has a finite ζ-net in Lp(Rn).

In fact, from the assumption that {φ(t)}t≥0 has a (L2(Rn), L2(Rn))-random attractor, we know that there
is a T̃1 which depends on ζ and M̃, such that {φ(tn)xn|tn ≥ T̃1} has a finite (3M̃)(2−p)/2(ζ/)p/2-net in L2(Rn).
Taking T̃0 = max{T̃1, T̃}, then from Lemma 3, we know that {φ(tn)xn|tn ≥ T̃0} has a finite ζ-net in Lp(Rn).
Since tn → ∞, we obtain that {φ(tn)xn}∞

n=1 has a finite ζ-net in Lp(Rn), too. Then from the arbitrariness of ζ,
we get that {φ(tn)xn}∞

n=1 is precompact in Lp(Rn).

3. The random dynamical system

In this section, we show that there is a continuous random dynamical system generated by the stochastic
reaction-diffusion equation defined on Rn with distribution derivatives and multiplicative noise:

du + (λu− ∆u)dt = ( f (x)− g(u) + Dj f j)dt + bu ◦ dW(t), in R+ ×Rn, (12)

with the initial value condition
u(x, 0) = u0(x), x ∈ Rn, (13)

where λ, b are a non-negative constant, f j, f ∈ L2(Rn), Dj =
∂

∂xj
is distribution derivatives, and g is a Lipschitz

function which satisfies the conditions (3)-(5).
To model the random noise in Equation (12), we need to define a shift operator {ϑt}t∈R on Ω (where Ω is

defined in the introduction) by
ϑtω(·) = ω(·+ t)−ω(t), t ∈ R,

then (Ω,F ,P, {ϑt}t∈R) is an ergodic metric dynamical system, see [3,25].
For our purpose, it is convenient to convert the Equation (12) into a deterministic system with a random

parameter, and then show that it generates a random dynamical system.
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We now introduce an Ornstein-Uhlenbeck process given by the Brownian motion. Put

z(ϑtω) := −
∫ 0

−∞
es(ϑtω)(s)ds, t ∈ R, (14)

which is called the Ornstein-Uhlenbeck process and solves the Itô equation dz + zdt = dW(t).
From [3,11,31,32], it is known that the random variable z(ω) is tempered, and there is a ϑt-invariant set

Ω̃ ⊂ Ω of full P measure such that for every ω ∈ Ω̃, t 7→ z(ϑtω) is continuous in t; limt→±∞
|z(ϑtω)|
|t| = 0; and

limt→±∞
1
t
∫ t

0 z(ϑsω)ds = 0.
To show that Equation 12 generates a random dynamical system, we let

v(t) = e−bz(ϑtω)u(t), (15)

where u is a solution of Equation (12). Then we can consider the following evolution equation with random
coefficients but without white noise:

dv
dt

+ λv− ∆v = e−bz(ϑtω)( f (x)− g(ebz(ϑtω)v) + Dj f j) + bz(ϑtω)v, (16)

with the initial value condition

v(x, 0) = v0(x) = e−bz(ϑtω)u0(x), x ∈ Rn . (17)

We will consider Equations (16) and (17) for ω ∈ Ω̃ and write Ω̃ as Ω from now on. By using the Galerkin
method we can show that if g satisfies (3)-(5), then for every v0 in L2(Rn), Equation (16) possesses a unique
weak solution

v(t, ω, v0) ∈ L∞(0, T, L2(Rn))
⋂

L2(0, T, H1(Rn))
⋂

Lp(0, T, Lp(Rn)) T > 0,

which is continuous with respect to v0 in ∈ L2(Rn) for all t > 0. Then equation (16) generates a continuous
random dynamical system {φ(t)}t≥0 over (Ω,F ,P, {ϑt}t∈R), where

φ(t, ω, v0) = v(t, ω, v0), for v0 ∈ L2(Rn), t ≥ 0 and for all ω ∈ Ω.

We define mapping ϕ : R+ ×Ω× L2(Rn)→ L2(Rn) by

ϕ(t, ω, u0) = u(t, ω, u0) = ebz(ϑtω)φ(t, ω, v0),

for v0 ∈ L2(Rn), t ≥ 0 and for all ω ∈ Ω.
Then ϕ is a continuous random dynamical system associated with the Equation (12) on L2(Rn). Note that

the two random dynamical system are equivalent. It is easy to check that ϕ has a random attractor provided φ

possesses a random attractor. Then, we only need to consider the random dynamical system φ.

4. Existence of random attractors

In this section, we prove the existence of a global random attractor for the random dynamical system φ

associated with the semilinear reaction-diffusion Equation (12)-(13) on Rn. The main result of this section can
now be stated as follows. Firstly, we derive uniformly a priori estimates on the solutions of Equations (12)-(13)
defined on Rn when t→ ∞ with the purpose of proving the existence of a bounded random absorbing set and
the asymptotic compactness of the random dynamical system associated with the equation. In particular, we
will show that the tails of the solutions for large space variable are uniformly small when time is sufficiently
large.

From now on, we always assume that D is the collection of all tempered random subsets of
L2(Rn), Lp(Rn) with respect to (Ω,F ,P, {ϑt}t∈R). The next lemma shows that φ has a random absorbing
set in D.
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Lemma 5. Assume that f j, f ∈ L2(Rn), and (1.3)-(1.5) hold. Then there exists a random ball {K(ω)} ∈ D centered at
0 with random radius ρ(ω) > 0 such that {K(ω)} is a random absorbing set for φ in D, that is, for any {B(ω)} ∈ D

and P-a.e. ω ∈ Ω, there is TB(ω) > 0 such that

φ(t, ϑ−tω, B(ϑ−tω, )) ⊆ K(ω) for all t > TB(ω). (18)

Proof. Taking the inner product of Equation (16) with v in L2(Rn), we have

1
2

d
dt
‖v‖2 + λ‖v‖2 + ‖∇v‖2 = −e−bz(ϑtω)

∫
Rn

g(ebz(ϑtω)v)vdx + e−bz(ϑtω)(( f , v) + (Dj f j, v)) + bz(ϑtω)‖v‖2 . (19)

By the condition (4), we obtain that

e−bz(ϑtω)
∫
Rn

g(ebz(ϑtω)v)vdx = e−2bz(ϑtω)
∫
Rn

g(u)udx ≥ β2eb(p−2)z(ϑtω)‖v‖p − δ2‖v‖2 . (20)

By the Hölder, inequality and the Young inequality, we conclude

e−bz(ϑtω)( f , v) ≤ e−bz(ϑtω)‖ f ‖ · ‖v‖ ≤ 1
2δ0

e−2bz(ϑtω)‖ f ‖2 +
δ0

2
‖v‖2 (21)

e−bz(ϑtω)(Dj f j, v) = e−bz(ϑtω)( f̃ ,∇v) ≤ e−bz(ϑtω)‖ f̃ ‖ · ‖∇v‖ ≤ 1
2

e−2bz(ϑtω)‖ f̃ ‖2 +
1
2
‖∇v‖2 , (22)

where f̃ = ( f 1, . . . , f n) and ‖ f̃ ‖2 = ∑n
j=1 | f j|2.

Then substituting Equations (20)-(22) into (19), it yields

d
dt
‖v‖2 − (2bz(ϑtω)− δ0)‖v‖2 + ‖∇v‖2 + 2β2eb(p−2)z(ϑtω)‖v‖p ≤ 1

δ0
e−2bz(ϑtω)(‖ f ‖2 + δ0‖ f̃ ‖2) , (23)

where δ0 = λ− δ2, By the condition (5), δ0 is non-negative constant. Hence, we can rewrite (23) as

d
dt
‖v‖2 − (2bz(ϑtω)− δ0)‖v‖2 ≤ 1

δ0
e−2bz(ϑtω)(‖ f ‖2 + δ0‖ f̃ ‖2) . (24)

By applying the Gronwall,s Lemma to (24), we find that

‖v(t, ω, v0(ω))‖2

≤ e2
∫ t

0 bz(ϑsω)ds−δ0t‖v0(ω)‖2 +
‖ f ‖2 + δ0‖ f̃ ‖2

δ0
e2b

∫ t
0 z(ϑsω)ds−δ0t

∫ t

0
e−2bz(ϑsω)−2b

∫ s
0 z(ϑτω)dτ+δ0sds . (25)

By replacing ω by ϑ−tω in (25), we get

‖v(t, ϑ−tω, v0(ϑ−tω))‖2

≤ e2b
∫ t

0 z(ϑs−tω)ds−δ0t‖v0(ϑ−tω)‖2 +
‖ f ‖2 + δ0‖ f̃ ‖2

δ0
e2b

∫ t
0 z(ϑs−tω)ds−δ0t

∫ t

0
e−2bz(ϑs−tω)−2b

∫ s
0 z(ϑτ−tω)dτ+δ0sds

≤ e2b
∫ 0
−t z(ϑsω)ds−δ0t‖v0(ϑ−tω)‖2 +

‖ f ‖2 + δ0‖ f̃ ‖2

δ0

∫ 0

−t
e−2bz(ϑsω)+2b

∫ 0
s z(ϑτω)dτ+δ0sds

≤ e2b
∫ 0
−t z(ϑsω)ds−δ0t‖v0(ϑ−tω)‖2 +

‖ f ‖2 + δ0‖ f̃ ‖2

δ0

∫ 0

−∞
e−2bz(ϑsω)+2b

∫ 0
s z(ϑτω)dτ+δ0sds . (26)

By the properties of Ornstein-Uhlenbeck process,

∫ 0

−∞
e−2bz(ϑsω)+2b

∫ 0
s z(ϑτω)dτ+δ0sds < +∞ . (27)

Notice that {B(ω)} ∈ D is tempered, then for any v0(ϑ−tω) ∈ B(ϑ−tω),

lim
t→+∞

e2b
∫ 0
−t z(ϑsω)ds−δ0t‖v0(ϑ−tω)‖2 = 0 . (28)
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We can choose

ρ(ω) = 1 +
‖ f ‖2 + δ0‖ f̃ ‖2

δ0

∫ 0

−∞
e−2bz(ϑsω)+2b

∫ 0
s z(ϑτω)dτ+δ0sds (29)

and let
K(ω) = {u ∈ L2(Rn) : ‖u‖2 ≤ ρ(ω)} .

Then {K(ω)} ∈ D, and {K(ω)} is a random absorbing set for φ in D, which completes the proof.

Lemma 6. Assume that f j, f ∈ L2(Rn), and Equations (3)-(5) hold. The random dynamical system {φ(t)}t≥0 has a
(L2(Rn), Lp(Rn)) and (L2(Rn), H1(Rn))-bounded absorbing set, that is, there exists a random radius ρ̃(ω) such that
for any {B(ω)} ∈ D and v0(ω) ∈ B(ω), there exists a TB(ω) > 0 such that the solution φ of (27) satisfies for P-a.e.
ω ∈ Ω, for all t ≥ TB(ω),

‖φ(t, ϑ−tω, v0(ϑ−tω))‖p + ‖φ(t, ϑ−tω, v0(ϑ−tω))‖2 + ‖∇φ(t, ϑ−tω, v0(ϑ−tω))‖2 ≤ ρ̃(ω) . (30)

Proof. Taking the inner product of Equation (16) with v in L2(Rn), we have

1
2

d
dt
‖v‖2 + λ‖v‖2 + ‖∇v‖2 = −e−bz(ϑtω)

∫
Rn

g(ebz(ϑtω)v)vdx + e−bz(ϑtω)(( f , v) + (Dj f j, v)) + bz(ϑtω)‖v‖2 .

(31)
Using Equations (20)-(21) and Lemma 5, we conclude from (31) that

1
2

d
dt
‖v‖2 +

δ0

2
‖v‖2 +

1
2
‖∇v‖2 + β2eb(p−2)z(ϑtω)‖v‖p ≤ 1

2δ0
e−2bz(ϑtω)‖ f ‖2 + bz(ϑtω)ρ(ω) + e−bz(ϑtω)(Dj f j, v) .

(32)
Hence, we can rewrite Equation (32) as

1
2

d
dt
‖v‖2 +

δ0

2
‖v‖2 +

1
2
‖∇v‖2 + β2eb(p−2)z(ϑtω)‖v‖p ≤ ρ̃(ω) + e−bz(ϑtω)(Dj f j, v) . (33)

Noticing that
‖∇v + f̃ ‖2 ≤ 2‖∇v‖2 + 2‖ f̃ ‖2 (34)

by (34), we conclude from (33) that

d
dt
‖v‖2 + C(‖∇v + f̃ ‖2 + ‖v‖2 + ‖v‖p) ≤ ρ̃(ω) . (35)

Integrating the Equation (35) from t to t + 1, and using Lemma 5, we can find a TB(ω) > 0, such that for
all t ≥ TB(ω), ∫ t+1

t
(‖∇v + f̃ ‖2 + ‖v‖2 + ‖v‖p) ≤ ρ̃(ω) . (36)

On the other hand , multiplying Equation (16) with vt, and integrating over Rn we find that

‖vt‖2 +
1
2

d
dt
(‖∇v‖2 + 2( f̃ ,∇v) + λ‖v‖2 + 2

∫
Rn

g(u)dx) = e−bz(ϑtω)( f , vt) +
1
2

b|z(ϑtω)|‖v‖2 +
1
2
‖vt‖2 . (37)

By the Hölder,s inequality and the Young,s inequality, we conclude

e−bz(ϑtω)( f , vt) ≤ e−bz(ϑtω)‖ f ‖ · ‖vt‖ ≤
1
2

e−2bz(ϑtω)‖ f ‖2 +
1
2
‖vt‖2 . (38)

Now, let G(s) =
∫ s

0 g(τ)dτ; then by condition (4) again, we can conclude that

β̃2|s|p − δ̃2|s|2 ≤ G(s) ≤ β̃1|s|p + δ̃1|s|2 .

Therefore

β̃2

∫
Rn
|u|pdx− δ̃2

∫
Rn
|u|2dx ≤

∫
Rn

G(u)dx ≤ β̃1

∫
Rn
|u|pdx + δ̃1

∫
Rn
|u|2dx . (39)
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Then inserting (38)-(39) into (37) and by Lemma 5, it yields

d
dt
(‖∇v‖2 + 2( f̃ ,∇v) + ‖ f̃ ‖2 − ‖ f̃ ‖2 + λ‖v‖2 + β̃2

∫
Rn
|u|pdx− δ̃2

∫
Rn
|u|2dx) ≤ ρ̃(ω) . (40)

Hence, we can rewrite (40) as

d
dt
(‖∇v + f̃ ‖2 + ‖v‖2 + ‖v‖p) ≤ ρ̃(ω) . (41)

Combining with (36) and (41), by the uniform Gronwall,s Lemma, we deduce that

‖∇v + f̃ ‖2 + ‖v‖2 + ‖v‖p ≤ ρ̃(ω) . (42)

Using ‖∇v‖2 ≤ 2‖∇v + f̃ ‖2 + 2‖ f̃ ‖2 and Equation (42) implies that for t ≤ TB(ω) + 1,

‖∇v‖2 + ‖v‖2 + ‖v‖p ≤ ρ̃(ω) . (43)

The proof is concluded.

Lemma 7. Assume that f j, f ∈ L2(Rn), and (3)-(5) hold. Then there exists a tempered random variable R̃1(ω) > 0
such that for any {B(ω)} ∈ D and v0(ω) ∈ B(ω), there exists a TB(ω) > 0 such that the solution φ of (16) satisfies
for P-a.e. ω ∈ Ω, for all t ≥ TB(ω),

∫ t+1

t
‖∇φ(s, ϑ−t−1ω, v0(ϑ−t−1ω))‖2ds ≤ R̃1(ω) . (44)

Proof. By substituting t by T̂ and ω by ϑ−tω in (25) for any T̂ ≥ 0, we find that

‖v(T̂, ϑ−tω, v0(ϑ−tω))‖2

≤ e2b
∫ T̂

0 z(ϑs−tω)ds−δ0T̂‖v0(ϑ−tω)‖2 +
‖ f ‖2 + δ0‖ f̃ ‖2

δ0
e2b

∫ T̂
0 z(ϑs−tω)ds−δ0T̂

∫ T̂

0
e−2bz(ϑs−tω)−2b

∫ s
0 z(ϑτ−tω)dτ+δ0sds .

(45)

Multiplying two sides of the equation (45) by e2b
∫ t

T̂ z(ϑτ−tω)dτ−δ0(t−T̂), then simplifying it, we find that for
all t ≥ T̂

e2b
∫ t

T̂ z(ϑτ−tω)dτ−δ0(t−T̂)‖v(T̂, ϑ−tω, v0(ϑ−tω))‖2

≤ e2b
∫ t

0 z(ϑs−tω)ds−δ0t‖v0(ϑ−tω)‖2 +
‖ f ‖2 + δ0‖ f̃ ‖2

δ0

∫ T̂

0
e−2bz(ϑs−tω)+2b

∫ t
s z(ϑs−tω)ds−δ0(t−s)ds . (46)

By the Gronwall,s Lemma, of the Equation (23) we get that for all t ≥ T̂,

‖v(t, ω, v0(ω))‖2 ≤ e2b
∫ t

T̂ z(ϑsω)ds−δ0(t−T̂)‖v(T̂, ω, v0(ω))‖2 −
∫ t

T̂
e2b

∫ t
s z(ϑτω)dτ+δ0(s−t)‖∇v(s, ω, v0(ω))‖2ds

+
‖ f ‖2 + δ0‖ f̃ ‖2

δ0

∫ t

T̂
e−2bz(ϑsω)+2b

∫ t
s z(ϑτω)dτ+δ0(s−t)ds (47)

which obviously gives

∫ t

T̂
e2b

∫ t
s z(ϑτω)dτ+δ0(s−t)‖∇v(s, ω, v0(ω))‖2ds

≤ e2b
∫ t

T̂ z(ϑsω)ds−δ0(t−T̂)‖v(T̂, ω, v0(ω))‖2 +
‖ f ‖2 + δ0‖ f̃ ‖2

δ0

∫ t

T̂
e−2bz(ϑsω)+2b

∫ t
s z(ϑτω)dτ+δ0(s−t)ds . (48)

By replacing ω by ϑ−tω into (48), we get
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∫ t

T̂
e2b

∫ t
s z(ϑτ−tω)dτ+δ0(s−t)‖∇v(s, ϑ−tω, v0(ϑ−tω))‖2ds

≤ e2b
∫ t

T̂ z(ϑs−tω)ds−δ0(t−T̂)‖v(T̂, ϑ−tω, v0(ϑ−tω))‖2 +
‖ f ‖2 + δ0‖ f̃ ‖2

δ0

∫ t

T̂
e−2bz(ϑs−tω)+2b

∫ t
s z(ϑτ−tω)dτ+δ0(s−t)ds .

(49)

By using (46) into (49), we have

∫ t

T̂
e2b

∫ t
s z(ϑτ−tω)dτ+δ0(s−t)‖∇v(s, ϑ−tω, v0(ϑ−tω))‖2ds

≤ e2b
∫ t

0 z(ϑs−tω)ds−δ0t‖v0(ϑ−tω)‖2 +
‖ f ‖2 + δ0‖ f̃ ‖2

δ0

∫ T̂

0
e−2bz(ϑs−tω)+2b

∫ t
s z(ϑs−tω)ds−δ0(s−t)ds

+
‖ f ‖2 + δ0‖ f̃ ‖2

δ0

∫ t

T̂
e−2bz(ϑs−tω)+2b

∫ t
s z(ϑτ−tω)dτ+δ0(s−t)ds

≤ e2b
∫ t

0 z(ϑs−tω)ds−δ0t‖v0(ϑ−tω)‖2 +
‖ f ‖2 + δ0‖ f̃ ‖2

δ0

∫ t

0
e−2bz(ϑs−tω)+2b

∫ t
s z(ϑτ−tω)dτ+δ0(s−t)ds

≤ e2b
∫ 0
−t z(ϑsω)ds−δ0t‖v0(ϑ−tω)‖2 +

‖ f ‖2 + δ0‖ f̃ ‖2

δ0

∫ 0

−t
e−2bz(ϑsω)+2b

∫ 0
s z(ϑτω)dτ+δ0sds . (50)

Replacing T̂ by t and t by t + 1 in (50), we have

∫ t+1

t
e2b

∫ t+1
s z(ϑτ−t−1ω)dτ+δ0(s−t−1)‖∇v(s, ϑ−t−1ω, v0(ϑ−t−1ω))‖2ds

≤ e2b
∫ 0
−t−1 z(ϑsω)ds−δ0(t+1)‖v0(ϑ−t−1ω)‖2 +

‖ f ‖2 + δ0‖ f̃ ‖2

δ0

∫ 0

−t−1
e−2bz(ϑsω)+2b

∫ 0
s z(ϑτω)dτ+δ0sds . (51)

For s ∈ [t, t + 1], to yield that

∫ t+1

t
e2b

∫ t+1
s z(ϑτ−t−1ω)dτ+δ0(s−t−1)‖∇v(s, ϑ−t−1ω, v0(ϑ−t−1ω))‖2ds

≥
∫ t+1

t
e−2b max0≤τ≤1 |z(ϑτω)|−δ0‖∇v(s, ϑ−t−1ω, v0(ϑ−t−1ω))‖2ds . (52)

By the property of z(ω) and temperedness of ‖v0(ω)‖, there exists TB(ω) > 0 such that for all t ≥ TB(ω),
from (51) and (52), we find that∫ t+1

t
‖∇v(s, ϑ−t−1ω, v0(ϑ−t−1ω))‖2ds

≤ e2b
∫ 0
−t−1 z(ϑsω)ds+2b max0≤τ≤1 |z(ϑτω)|−δ0t‖v0(ϑ−t−1ω)‖2

+
‖ f ‖2 + δ0‖ f̃ ‖2

δ0

∫ 0

−t−1
e−2bz(ϑsω)+2b max0≤τ≤1 |z(ϑτω)|+2b

∫ 0
s z(ϑτω)dτ+δ0(s+1)ds

≤ 1 +
‖ f ‖2 + δ0‖ f̃ ‖2

δ0

∫ 0

−∞
e−2bz(ϑsω)+2be max0≤τ≤1 |z(ϑτω)|+2b

∫ 0
s z(ϑτω)dτ+δ0(s+1)ds = R̃1(ω) . (53)

It is easy to check that R̃1(ω) is tempered. This completes the proof.

Lemma 8. Assume that f j, f ∈ L2(Rn), and (3)-(5) hold. Let {B(ω)} ∈ D and v0(ω) ∈ B(ω). Then, for any ζ > 0,
there exist T̃ = T̃(ζ, ω, B) > 0 and K̃ = K̃(ζ, ω) > 0, such that the solution φ of Equation (16) satisfies for P-a.e.
ω ∈ Ω, ∀t ≥ T̃, ∫

|x|≥R̃
|φ(t, ϑ−tω, v0(ϑ−tω))|2dx ≤ ζ . (54)

Proof. We first need to define a smooth function σ(·) from R+ into [0, 1] such that σ(·) = 0 on [0, 1] and
σ(·) = 1 on [2,+∞), which evidently implies that there is a positive constant c such that the |σ′(s)| ≤ c for all
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s ≥ 0. For convenience, we write σκ = σ( |x|
2

κ2 ). Now multiplying equation (16) with σκv and integrating over
Rn, we have

1
2

d
dt

∫
Rn

σκ |v|2dx + λ
∫
Rn

σκ |v|2dx

=
∫
Rn
(∆v)σκvdx + bz(ϑtω)

∫
Rn

σκ |v|2dx− e−bz(ϑtω)

(∫
Rn

σκ g(u)vdx +
∫
Rn

σκ f vdx +
∫
Rn

Dj f jσκvdx
)

, (55)

where∫
Rn
(∆v)σκvdx = −

∫
Rn
|∇v|2σκdx−

∫
Rn

vσ′κ
2x
κ2 (∇v)dx ≤ −

∫
Rn
|∇v|2σκdx−

∫
κ≤|x|≤

√
2κ

vσ′κ
2x
κ2 (∇v)dx

≤ −
∫
Rn
|∇v|2σκdx +

2
√

2
κ

∫
κ≤|x|≤

√
2κ
|v| · |σ′κ | · |∇v|dx

≤ −
∫
Rn
|∇v|2σκdx +

2
√

2 c
κ

∫
Rn
|v| · |∇v|d ≤ −

∫
Rn
|∇v|2σκdx +

C0

κ
(‖v‖2 + ‖∇v‖2) (56)

where C0 is a non-negative constant. Now by condition (4), we get

e−bz(ϑtω)
∫
Rn

σκ g(u)vdx = e−2bz(ϑtω)
∫
Rn

σκ g(u)udx ≥ β2eb(p−2)z(ϑtω)
∫
Rn

σκ |v|pdx− δ2

∫
Rn

σκ |v|2dx . (57)

For the fourth term on the right-hand side of (55), we have that

e−bz(ϑtω)
∫
Rn

σκ f vdx ≤ δ0

2

∫
Rn

σκ |v|2dx +
1

2δ0
e−2bz(ϑtω)

∫
Rn

σκ | f |2dx . (58)

Next, we estimate the last term on the right-hand side of (55), we get that

e−bz(ϑtω)
∫
Rn

Dj f jσκvdx = −e−bz(ϑtω)
∫
Rn

f̃
2x
κ2 σ′κ v dx− e−bz(ϑtω)

∫
Rn

σκ f̃ (∇v)dx

≤ C0

κ
e−bz(ϑtω)

∫
Rn
| f̃ ||v|dx + e−bz(ϑtω)

∫
Rn
| f̃ |σκ |∇v|dx

≤ C1

κ
(‖ f̃ ‖2 + ‖v‖2) +

δ0

2
e−2bz(ϑtω)

∫
Rn

σκ | f̃ |2dx +
1

2δ0

∫
Rn

σκ |∇v|2dx (59)

where C1 is a non-negative constant. Then inserting (56) - (59) into (55) to see that

d
dt

∫
Rn

σκ |v|2dx− (2bz(ϑtω)− δ0)
∫
Rn

σκ |v|2dx +
∫
Rn
|∇v|2σκdx + 2β2eb(p−2)z(ϑtω)

∫
Rn

σκ |v|pdx

≤ 1
δ0

e−2bz(ϑtω)
∫
Rn

σκ(| f |2 + δ0| f̃ |2)dx +
C2

κ
‖ f̃ ‖2 +

C3

κ
‖v‖2 +

C4

κ
‖∇v‖2 (60)

where C2, C3 and C4 are non-negative constants. Hence, we can rewrite (60) as

d
dt

∫
Rn

σκ |v|2dx− (2bz(ϑtω)− δ0)
∫
Rn

σκ |v|2dx

≤ 1
δ0

e−2bz(ϑtω)
∫
Rn

σκ(| f |2 + δ0| f̃ |2)dx +
C2

κ
‖ f̃ ‖2 +

C3

κ
‖v‖2 +

C4

κ
‖∇v‖2 . (61)

By applying the Gronwall,s lemma to (61), for every t ≥ T̂, we find that∫
Rn

σκ |v(t, ω, v0(ω))|2dx

≤ e2b
∫ t

T̂ z(ϑτω)dτ−δ0(t−T̂)
∫
Rn

σκ |v(T̂, ω, v0(ω))|2dx +
1
δ0

∫ t

T̂
e2b

∫ t
s z(ϑτω)dτ−δ0(t−s)−2bz(ϑsω)

∫
Rn

σκ(| f |2 + δ0| f̃ |2)dx

+
C3

κ

∫ t

T̂
e2b

∫ t
s z(ϑτω)dτ−δ0(t−s)‖v(s, ω, v0(ω))‖2ds +

C4

κ

∫ t

T̂
e2b

∫ t
s z(ϑτω)dτ−δ0(t−s)‖∇v(s, ω, v0(ω))‖2ds

+
C2

κ

∫ t

T̂
e2b

∫ t
s z(ϑτω)dτ−δ0(t−s)‖ f̃ ‖2ds . (62)
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Then, substituting ω by ϑ−tω into (62), we have that∫
Rn

σκ |v(t, ϑ−tω, v0(ϑ−tω))|2dx

≤ e2b
∫ t

T̂ z(ϑτ−tω)dτ−δ0(t−T̂)
∫
Rn

σκ |v(T̂, ϑ−tω, v0(ϑ−tω))|2dx

+
1
δ0

∫ t

T̂
e2b

∫ t
s z(ϑτ−tω)dτ−δ0(t−s)−2bz(ϑs−tω)

∫
Rn

σκ(| f |2 + δ0| f̃ |2)dxds

+
C3

κ

∫ t

T̂
e2b

∫ t
s z(ϑτ−tω)dτ−δ0(t−s)‖v(s, ϑ−tω, v0(ϑ−tω))‖2ds+

+
C4

κ

∫ t

T̂
e2b

∫ t
s z(ϑτ−tω)dτ−δ0(t−s)‖∇v(s, ϑ−tω, v0(ϑ−tω))‖2ds +

C2

κ

∫ t

T̂
e2b

∫ t
s z(ϑτ−tω)dτ−δ0(t−s)‖ f̃ ‖2ds . (63)

Then, we estimate every term on the right-hand side of (63). Firstly by Equation (25), replacing t by T̂ and
ω by ϑ−tω, then we get

e2b
∫ t

T̂ z(ϑτ−tω)dτ−δ0(t−T̂)
∫
Rn

σκ |v(T̂, ϑ−tω, v0(ϑ−tω))|2dx

≤ e2b
∫ t

T̂ z(ϑτ−tω)dτ−δ0(t−T̂)(e2b
∫ T̂

0 z(ϑs−tω)ds−δ0T̂‖v0(ϑ−tω)‖2

+
‖ f ‖2 + δ0‖ f̃ ‖2

δ0
e2b

∫ T̂
0 z(ϑs−tω)ds−δ0T̂

∫ T̂

0
e−2bz(ϑs−tω)−2b

∫ s
0 z(ϑτ−tω)dτ+δ0sds)

≤ e2b
∫ t

0 z(ϑτ−tω)dτ−δ0t‖v0(ϑ−tω)‖2 +
‖ f ‖2 + δ0‖ f̃ ‖2

δ0
e2b

∫ t
0 z(ϑτ−tω)dτ−δ0t

∫ T̂

0
e−2bz(ϑs−tω)−2b

∫ s
0 z(ϑτ−tω)dτ+δ0sds

≤ e2b
∫ t

0 z(ϑτ−tω)dτ−δ0t‖v0(ϑ−tω)‖2 +
‖ f ‖2 + δ0‖ f̃ ‖2

δ0

∫ T̂

0
e−2bz(ϑs−tω)+2b

∫ t
s z(ϑτ−tω)dτ−δ0(t−s)ds . (64)

It easy to see that there exists T̃1 = T̃1(B, ζ, ω) > T̂, such that for all t > T̃1, then

e2b
∫ t

T̂ z(ϑτ−tω)dτ−δ0(t−T̂)
∫
Rn

σκ |v(T̂, ϑ−tω, v0(ϑ−tω))|2dx ≤ ζ . (65)

For the second term on the right-hand side of (63), Since f , f̃ ∈ L2(Rn), there are T̃2 = T̃2(ζ, ω) > T̂ and
K̃1 = K̃1(ζ, ω) > 0, such that for all t > T̃2 and κ > K̃1, then

1
δ0

∫ t

T̂
e2b

∫ t
s z(ϑτ−tω)dτ−δ0(t−s)−2bz(ϑs−tω)

∫
Rn

σκ(| f |2 + δ0| f̃ |2)dxds

≤ 1
δ0

∫ t

T̂
e2b

∫ t
s z(ϑτ−tω)dτ−δ0(t−s)−2bz(ϑs−tω)

∫
|x|≥κ

| f |2dxds +
∫ t

T̂
e2b

∫ t
s z(ϑτ−tω)dτ−δ0(t−s)−2bz(ϑs−tω)

∫
|x|≥κ

| f̃ |2dxds

≤ ζ . (66)

For the third term on the right-hand side of (63). By replacing t by s and ω by ϑ−tω in (25),we get

C3

κ

∫ t

T̂
e2b

∫ t
s z(ϑτ−tω)dτ−δ0(t−s)‖v(s, ϑ−tω, v0(ϑ−tω))‖2ds

≤ C3

κ

∫ t

T̂
e2b

∫ t
s z(ϑτ−tω)dτ−δ0(t−s)(e2

∫ s
0 bz(ϑτ−tω)dτ−δ0s‖v0(ϑ−tω)‖2

+
‖ f ‖2 + δ0‖ f̃ ‖2

δ0
e2b

∫ s
0 z(ϑτ−tω)dτ−δ0s

∫ s

0
e−2bz(ϑs̃−tω)−2b

∫ s̃
0 z(ϑτ−tω)dτ+δ0 s̃ds̃)ds

≤ C3

κ
(t− T̂)e2b

∫ t
0 z(ϑτ−tω)dτ−δ0t‖v0(ϑ−tω)‖2 +

C3(‖ f ‖2 + δ0‖ f̃ ‖2)

κδ0

∫ t

T̂

∫ s

0
e2b

∫ t
s̃ z(ϑτ−tω)dτ−δ0(t−s̃)−2bz(ϑs̃−tω)ds̃ds .

(67)

Then, by f , f̃ ∈ L2(Rn), there exist T̃3 = T̃3(B, ζ, ω) > T̂ and K̃2 = K̃2(ζ, ω) > 0, such that for all t > T̃3

and κ > K̃2, we see that

C3

κ

∫ t

T̂
e2b

∫ t
s z(ϑτ−tω)dτ−δ0(t−s)‖v(s, ϑ−tω, v0(ϑ−tω))‖2ds ≤ ζ . (68)
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Next, we estimate the fourth term on the right-hand side of (63). Since f , f̃ ∈ L2(Rn), by using (50), there
exist T̃4 = T̃4(B, ζ, ω) > T̂ and K̃3 = K̃3(ζ.ω) > 0, such that for all t > T̃4 and κ > K̃3, we get that

C4

κ

∫ t

T̂
e2b

∫ t
s z(ϑτ−tω)dτ−δ0(t−s)‖∇v(s, ϑ−tω, v0(ϑ−tω))‖2ds ≤ ζ . (69)

Finally, we estimate the last term on the right-hand side of (63). Since f̃ ∈ L2(Rn), there exist T̃5 =

T̃5(ζ, ω) > T̂ and K̃4 = K̃4(ζ.ω) > 0, such that for all t > T̃5 and κ > K̃4, we obtain that

C2

κ

∫ t

T̂
e2b

∫ t
s z(ϑτ−tω)dτ−δ0(t−s)‖ f̃ ‖2ds ≤ ζ . (70)

By letting

T̃ = max{T̃1, T̃2, T̃3, T̃4, T̃5},
K̃ = max{K̃1, K̃2, K̃3, K̃4} . (71)

Then, inserting Equations (65)-(66),(68)-(70) into Equation (63), for all t > T̃ and κ > K̃, we obtain that∫
Rn

σκ |v(t, ϑ−tω, v0(ϑ−tω))|2dx ≤ 5ζ , (72)

which shows that ∫
|x|≥K̃

|φ(t, ϑ−tω, v0(ϑ−tω))|2dx ≤ 5ζ . (73)

The proof is concluded.

Theorem 4. Assume that f j, f ∈ L2(Rn), and (3)-(5) hold. The random dynamical system {φ(t)}t≥0 generated by the
solution of Equation (16) with initial data v0 ∈ L2(Rn). Then {φ(t)}t≥0 has a (L2(Rn), L2(Rn))-random attractor,
which is nonempty, compact, invariant in L2(Rn) and attracts every bounded subset of L2(Rn) with respect to L2(Rn)

norm.

Proof. From Lemmas 5, 6 and 8, we know that all the conditions in Corollary 1, are satisfied.

In the following, we will give the asymptotic a priori estimates of {φ(t)}t≥0 with respect to Lp-norm,
which play a crucial role in the proof of the (L2(Rn), Lp(Rn))-asymptotic compactness.

Lemma 9. Assume that f j, f ∈ L2(Rn), and (3)-(5) hold. Let {Bp(ω)} ∈ D and v0(ω) ∈ Bp(ω). Then, for any
ζ > 0, there exist a random constant T̃ = T̃(ζ, ω, Bp) > 0 and M̃ = M̃(ζ, ω) > 0, such that the solution φ of equation
(16) satisfies for P-a.e. ω ∈ Ω, ∀t ≥ T̃,∫

Ω(|φ(t)|≥M̃)
|φ(t, ϑ−tω, v0(ϑ−tω))|pdx ≤ ε ζ (74)

where {Bp(ω)} is the (L2(Rn), Lp(Rn))-bounded absorbing set obtained in the preceding lemma, and constant ε is the
independent of M̃, T̃ and ζ.

Proof. For any fixed ζ > 0, first, we know that there exists $ > 0 such that if e ⊂ Rn and m(e) ≤ $, then∫
e
| f j(x)|2dx < ζ, 1 ≤ j ≤ n (75)

and ∫
e
| f (x)|2dx < ζ . (76)

Furthermore, by Lemmas 1, 2 and Theorem 4, there exist T̃ = T̃(ζ, ω, Bp) > 0 and M̃1 = M̃(ζ, ω) > 0,
such that for every v0(ω) ∈ B(ω) and t ≥ T, we get

m(Rn(|φ(t)| ≥ M̃1)) ≤ {ζ, $} (77)



Open J. Math. Sci. 2020, 4, 126-141 139

and ∫
Rn(|φ(t)|≥M̃1)

|φ(t, ϑ−tω, v0(ϑ−tω))|2dx ≤ 8ζ . (78)

Additionally, it follows by (4) that f (s) ≥ 0 provided that s > (δ2/β2)
1/(p−2). Let M̃ =

max{M̃1, (δ2/β2)
1/(p−2)} and t ≥ T. Multiplying equation (16) with (v − M̃)+ and integrating over Rn,

we find that

1
2

d
dt

∫
Rn
|(v− M̃)+|2dx +

∫
Rn(v≥M̃)

|∇(v− M̃)+|2dx + (λ− bz(ϑtω))
∫
Rn

v · (v− M̃)+)dx

+ e−bz(ϑtω)
∫
Rn

g(u)(v− M̃)+dx = −e−bz(ϑtω)
∫
Rn

f̃ · ∇(v− M̃)+dx + e−bz(ϑtω)( f , (v− M̃)+) (79)

where (v− M̃)+) denotes the non-negative part of (v− M̃), that is

(v− M̃)+ =

{
v− M̃ v ≥ M̃+,

0 v ≤ M̃+.

Let Rn
1 = Rn(v ≥ M̃), then, we can rewrite (79) as

1
2

d
dt

∫
Rn
|(v− M̃)+|2dx +

∫
Rn

1

|∇v|2dx + (λ− bz(ϑtω))
∫
Rn

v · (v− M̃)+)dx + e−bz(ϑtω)
∫
Rn

1

g(u)(v− M̃)dx

= −e−bz(ϑtω)
∫
Rn

1

f̃ · ∇v dx + e−bz(ϑtω)
∫
Rn

1

f (v− M̃)dx . (80)

By the Cauchy inequality and the Hölder inequality, it yields

d
dt
‖(v− M̃)+‖2 + ε

(∫
Rn

1

|∇v|2dx +
∫
Rn

1

v · (v− M̃)+dx +
∫
Rn

1

g(u)(u− M̃)dx
)

≤ ε(
∫
Rn

1

| f̃ |2dx +
∫
Rn

1

| f |2dx) . (81)

Then inserting (75)-(78) into (81) and integrating from t to t + 1, we find that

∫ t+1

t

(∫
Rn

1

|∇v|2dx +
∫
Rn

1

|v|2dx +
∫
Rn

1

g(u)(u− M̃)dx
)

dx ≤ ε ζ . (82)

Hence, ∫ t+1

t

(∫
Rn(v≥2M̃)

|∇v + f̃ |2dx +
∫
Rn(v≥2M̃)

|v|2dx +
∫
Rn(v≥2M̃)

g(u)u dx
)

dx ≤ ε ζ . (83)

On the other hand, multiplying Equation (16) with [(v− 2M̃)+]t and denote Rn(v ≥ 2M̃) by Rn
2 , then we

have
d
dt

(∫
Rn

2

|∇v + f̃ |2dx +
∫
Rn

2

|v|2dx +
∫
Rn

2

g(u) dx
)

dx ≤ ε ζ (84)

in the same method as in proving (41).
Combining with (83)- (84), by using the uniform Gronwall lemma, we see that∫

Rn
2

|∇v + f̃ |2dx +
∫
Rn

2

|v|2dx +
∫
Rn

2

g(u) dx ≤ ε ζ . (85)

Hence, we can rewrite (85) as∫
Rn

2

|∇v|2dx ≤ 2
∫
Rn

2

|∇v + f̃ |2dx + 2
∫
Rn

2

| f̃ |2dx ≤ ε ζ (86)

and ∫
Rn

2

g(u) dx =
∫
Rn

2

g(ebz(ϑtω)v) dx .
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Since g is Lipschitz∫
Rn

2

g(ebz(ϑtω)v) dx =
∫
Rn

2

[g(ebz(ϑtω)v)− g(0)] dx ≤ C
∫
Rn

2

ebz(ϑtω).|v| dx ≤ Cε ζ . (87)

Repeating the same steps as above and taking (v + M̃)− and [(v + 2M̃)−]t instead of (v− M̃)+ and [(v−
2M̃)+]t, respectively, we conclude that ∫

Rn(v≤−2M̃)
|∇v|2dx ≤ ε ζ (88)

and ∫
Rn(v≤−2M̃)

g(u) dx ≤ ε ζ . (89)

Then from (86) - (89), we conclude that∫
Rn(|v|≥2M̃)

|∇v((t)|2dx ≤ ε ζ (90)

and ∫
Rn(|v|≥2M̃)

g(u(t)) dx ≤ ε ζ . (91)

Thus, due to (39) and (78), Lemma 9 follows from (91).
By theorem 3, we directly get.

Theorem 5. Assume that f j, f ∈ L2(Rn), and (3)-(5) hold. The random dynamical system {φ(t)}t≥0 generated by the
solution of Equation (16) with initial data v0 ∈ L2(Rn). Then {φ(t)}t≥0 has a (L2(Rn), Lp(Rn))-random attractor,
which is nonempty, compact, invariant in Lp(Rn) and attracts every bounded subset of L2(Rn) with respect to Lp(Rn)

norm.

Remark 2. From Theorem 2, we have that the (L2(Rn), L2(Rn))-random attractor coincides with the
(L2(Rn), Lp(Rn))-random attractor.
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