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FLIP AND HOPF BIFURCATIONS OF DISCRETE-TIME

FITZHUGH-NAGUMO MODEL
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Abstract. In this paper, dynamics of a two-dimensional Fitzhugh-Nagumo
model is discussed. The discrete-time model is obtained with the imple-
mentation of forward Euler’s scheme. We present the parametric condi-
tions for local asymptotic stability of steady-states. It is shown that the
two-dimensional discrete-time model undergoes period-doubling bifurca-
tion and Neimark-Sacker bifurcation at its positive steady-state. Further-
more, in order to illustrate theoretical discussion some interesting numerical
examples are presented.
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1. Introduction

In 1961 FitzHugh and Nagumo [1] presented the following two-dimensional
model:
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where a1, b1 and c1 are positive constants. Using the forward Euler method to
system (1), we get the discrete-time model as follows:

(

x

y

)

→

(

x+ hc1

(

x+ y − x3

3

)

y − h
c1

(x− a1 + b1y)

)

, (2)

Received 24 February 2018. Revised 10 August 2018.
1 Corresponding Author

c© 2018 Qamar Din and Sadaf Khaliq. This is an open access article distributed under the Cre-

ative Commons Attribution License, which permits unrestricted use, distribution, and reproduction

in any medium, provided the original work is properly cited.

209



210 Q. Din, S. Khaliq

where h > 0 is step size. For further biological relevance and dynamical analysis
of some models that are very close to system (2), we refer to [2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13, 14, 15], and references are therein. We investigate the
existence of equilibria for (2) and local asymptotic stability of these steady-states
by implementing linearized stability analysis techniques. Also, Neimark-Sacker
bifurcation and period-doubling bifurcation are discussed.

2. Existence of equilibria and stability

The steady-states of (2) satisfy the following system of algebraic equations:

x = x+ hc1

(

x+ y −
x3

3

)

, y = y −
h

c1
(x− a1 + b1 ∗ y) . (3)

From (3), it is quite simple to obtain:

b1xs+ 3(1− b1)x− 3a1 = 0, y =
a1 − x

b1
.

Next, we define the following quantity:

∆ := 4b1(b1 − 1)3 − 9a21b
2
1. (4)

Then, it follows that

• If ∆ > 0, then system (2) has three distinct equilibrium points.
• If ∆ = 0, then system (2) has a multiple equilibrium points.
• If ∆ < 0, then system (2) has a unique positive equilibrium point.

For a1 = 4.92 and b1 = 0.16, we have ∆ = −5.95649 < 0 and existence for unique
positive equilibrium is depicted in Figure 1. For a1 ∈ [0, 50] and b1 ∈ [0, 50],
the region (blue) where ∆ < 0 and region (red) where ∆ > 0 are depicted in
Figure 2. Mathematically, we have the following conditions for negativity and
positivity of ∆:

• ∆ < 0 if and only if 0 < b1 ≤ 1, or b1 > 1 and a1 > 2
3

√

−1+3b1−3b2
1
+b3

1

b1
.

• ∆ > 0 if and only if b1 > 1 and a1 < 2
3

√

−1+3b1−3b2
1
+b3

1

b1
.

• ∆ = 0 if and only if b1 > 1 and a1 = 2
3

√

−1+3b1−3b2
1
+b3

1

b1
.

Now the Jacobian matrix of (2) evaluated at arbitrary equilibrium (x, y) is given
by:

J(x, y) :=

(

1 +
(

h− hx2
)

c1 hc1
−

h
c1

1− hb1
c1

)

.

Moreover, the characteristic polynomial of J(x, y) is given by:

P (λ) := λ2
−
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(5)
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Figure 1. For a1 = 4.92 and b1 = 0.16 existence of unique
positive equilibrium for (2)

Theorem 2.1. [16] Assume that ∆ < 0, then unique positive equilibrium (x, y)
has the following topological classification:
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∣
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Figure 2. Regions for existence of various equilibria

(iv) (x, y) is non-hyperbolic if and only if
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If we choose b1 = 0.45, c1 = 0.15, h ∈ [0, 1] and x ∈ [0, 10], then topological
classification for unique positive point of system (2) is shown in Figure 3.
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Figure 3. Topological classification for positive equilibrium

3. Bifurcation analysis

Studying bifurcation analysis for discrete-time models is a topic of great interest.
Recently, there are many articles have published for the investigation for period-
doubling and Neimark-Sacker bifurcations in discrete-time models [17, 18, 19, 20,
21, 22, 23]. In this section, we explore the parametric conditions under which
system (2) undergoes period-doubling and Neimark-Sacker bifurcations at its
unique positive equilibrium point. For this, first we discuss the emergence of
period-doubling bifurcation at positive equilibrium of system (2). Assume that
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P (−1) = 0, where P (λ) is defined in (5), then system (2) undergoes period-
doubling bifurcation as h varies in a small neighborhood of h0 defined by

h0 :=
b1 +

(

−1 + x2
)

c21 −
√

−4c21 + (b1 − (−1 + x2) c21)
2
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2
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.

Secondly, we assume that
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2
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(
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c21
)

2
)

< 0.

Then system (2) undergoes Neimark-Sacker bifurcation as parameter h varies in
a small neighborhood of h1 defined by:

h1 :=
b1 +

(

−1 + x2
)

c21

(1 + (−1 + x2) b1) c1
.

In order to verify aforementioned mathematical investigation for existence of
period-doubling and Neimark-Sacker bifurcations, we choose particular para-
metric values for system (2) as follows:

Period-doubling bifurcation: Let a1 = 2.6, b1 = 1.2, c1 = 1.9 and
h ∈ [0.3, 0.5]. In this case, system (2) undergoes period-doubling bifur-
cation as h varies in a small neighborhood of h0 = 0.39. Moreover, the
bifurcation diagrams for period-doubling bifurcation are shown in Fig-
ure 4 and Figure 5. Moreover, maximum Lyapunov exponents (MLE)
are shown in Figure 6 and a chaotic attractor is depicted in Figure 7.

Neimark-Sacker bifurcation: Taking a1 = 2.7, b1 = 2.5, c1 = 0.95 and
h ∈ [0.65, 0.72]. Then system (2) undergoes Neimark-Sacker bifurcation
as h varies in a small neighborhood of h1 = 0.69. The diagrams for
Neimark-Sacker bifurcation are given in Figure 8 and Figure 9. Further-
more, MLE are shown in Figure 10 and phase portrait at h = 0.69 is
depicted in Figure 11.

4. Conclusion

The qualitative behavior for a two-dimensional discrete-time Fitzhugh-Nagumo
model is investigated. Euler’s forward scheme is implemented to obtain the
discrete counterpart of the continuous Fitzhugh-Nagumo model. It is investi-
gated that discrete-time model has rich dynamical behavior as compare to its
continuous counterpart. The topological classification for steady-state solutions
is discussed. Furthermore, parametric conditions for the existence of period-
doubling bifurcation and Neimark-Sacker bifurcation are analyzed by taking h

as bifurcation parameter. At the end numerical simulations are provided to
illustrate the theoretical discussion.
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Figure 4. Bifurcation diagram for xn

Figure 5. Bifurcation diagram for yn
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Figure 6. Maximum Lyapunov exponents
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Figure 7. A chaotic attractor at h = 0.5
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Figure 8. Bifurcation diagram for xn

Figure 9. Bifurcation diagram for yn
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Figure 10. Maximum Lyapunov exponents
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Figure 11. Phase portrait at h = 0.69
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