نوع مقاله : مقاله کامل پژوهشی

نویسندگان

دانشکده مهندسی مواد و صنایع، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران.

چکیده

آلیاژهای منیزیمی، به دلیل استحکام مناسب، مدول­ یانگ و چگالی شبیه به استخوان انسان، دارای کاربردهای پزشکی بالقوه­ای در حوزه کاشتنی­ های زیست ­تخریب ­پذیر هستند. با این ­حال، یکی از مهم ­ترین موانع کلیدی برای کاربردهای بالینی آلیاژهای منیزیم، خوردگی سریع این آلیاژها در محیط بدن انسان است. اصلاح دانه ناشی از فرآیند حرارتی- مکانیکی، یک روش موثر برای افزایش استحکام و شکل ­پذیری آلیاژهای منیزیم بوده و ممکن است مقاومت به خوردگی آلیاژهای منیزیمی را تحت تاثیر قرار دهد. از این­ رو، در این پژوهش تاثیر فرآیند حرارتی- مکانیکی (شامل پرس گرم در دمای C˚ 250 و سپس عملیات حرارتی آنیل به مدت یک ساعت در دمای C˚ 300) بر رفتار خوردگی آلیاژ منیزیمی AZ31 پس از یک، چهار و هفت روز غوطه­ وری در محلول شبیه ­سازی­ شده ­بدن در دمای C˚ 25، مورد بررسی قرار گرفت. برای بررسی ریز­ساختار نمونه­ ها از میکروسکوپ نوری و الکترونی و از آزمون قطبش و مقاومت ظاهری الکتروشیمیایی به ترتیب برای ارزیابی نرخ خوردگی و مقاومت به خوردگی استفاده گردید. بررسی ریز­ساختار نمونه­ ها، نشان داد که عملیات حرارتی- مکانیکی موجب اصلاح دانه و بروز دوقلویی­ ها گردید. تبلور مجدد حاصل از فرآیند حرارتی- مکانیکی موجب ریز شدن دانه­ ها، افزایش مرزهای دانه و کاهش چگالی نابجایی­ ها شد که به نوبه خود مانع گسترش خوردگی می­ شوند. نتایج حاصل از آزمون ­های مقاومت ظاهری و قطبش نیز نشان داد که میزان مقاومت به خوردگی نمونه AZ31 تحت عملیات حرارتی- مکانیکی، پس از هفت روز غوطه­ وری، افزایش و نرخ خوردگی آن کاهش یافته است.

کلیدواژه‌ها

عنوان مقاله [English]

The Effect of Thermomechanical Process on the Corrosion Behavior of AZ31 Magnesium Alloy in Simulated Body Fluid

نویسندگان [English]

  • Hamed Jafari
  • Seyed Mahmood Rabiee
  • Seyed Jamal Hosseinipour

Faculty of Materials and Industrial Engineering, Babol Noshirvani University of Technology, Babol, Iran.

چکیده [English]

Magnesium alloys, with suitable strength, human-like elastic modulus and density, have potential medical applications in the field of biodegradable implant materials. However, one of the most important barriers to clinical applications of magnesium alloys is the rapid corrosion of these alloys in human body fluids. Grain refinement is an effective way to increase the strength and ductility of magnesium alloys and may improve the corrosion resistance of them. Grain refinement due to the thermomechanical process is an effective way to increase the strength and ductility of magnesium alloys and may affect the corrosion resistance of magnesium alloys. Hence, in this study, the effect of thermomechanical process (including warm forging at 250 ˚C and then annealing for 1 hour at 300 ˚C) on the corrosion behaviour of AZ31 magnesium alloy after 1, 4 and 7 days of immersion in a simulated body fluid was investigated at 25 ˚C. To investigate the microstructure of the samples, an optical and scanning electron microscopes were used. The electrochemical polarization and impedance tests were used to evaluate corrosion rate and corrosion resistance, respectively. The microstructure analysis of the samples showed that the thermomechanical process refined the grain and caused the twins to appear. In fact, the recrystallization resulting from the thermomechanical process caused the grain to refine, increasing the grain boundaries, and reducing the dislocations density, which, in turn, prevented corrosion. The results of impedance and polarization tests also showed that the corrosion resistance of AZ31 sample under thermomechanical operation increased after 7 days of immersion and decreased its corrosion rate.

کلیدواژه‌ها [English]

  • Thermomechanical
  • Corrosion rate
  • AZ31 alloy
  • Microstructure
  1.       Zhao, Z., Guan, R., Wang, X., Dai, C., An, C., Liu, C., et al., Effects of dynamic recrystallisation during deep rolling of semisolid slab and heat treatment on microstructure and properties of AZ31 alloy, Materials Science and Technology, 2014, 30 (3), 309-315.
  2.       Gu, X.N., Zheng, Y.F., A review on magnesium alloys as biodegradable materials, Frontiers of Materials Science in China, 2010, 4 (2), 111-115.
  3.       Agarwal, S., Curtin, J., Duffy, B., Jaiswal, S., Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications, Materials Science and Engineering, 2016, 68, 948-963.
  4.      Song, Y., Shan, D., Chen, R., Zhang, F., Han, E.H., Biodegradable behaviors of AZ31 magnesium alloy in simulated body fluid, Materials Science and Engineering, 2009, 29 (3), 1039-1045.
  5.      Choi, H., Kim, W., Effect of thermal treatment on the bio-corrosion and mechanical properties of ultrafine-grained ZK60 magnesium alloy, Journal of the mechanical behavior of biomedical materials, 2015, 51, 291-301.
  6.      Altan, T., Ngaile, G., Shen, G., Cold and hot forging: fundamentals and applications: ASM international, 2005.
  7.      Alvarez-Lopez, M., Pereda, M.D., Del Valle, J., Fernandez-Lorenzo, M., Garcia-Alonso, M., Ruano, OA., et al., Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids, Acta Biomaterialia, 2010, 6 (5), 1763-1771.
  8.      Zeng, R., Dietzel, W., Witte, F., Hort, N., Blawert, C., Progress and challenge for magnesium alloys as biomaterials, Advanced Engineering Materials, 2008,10 (8), 3-14.
  9.      Kim, W., Lee, H., Park, J., Kim, M., Yoon, U., Forging of Mg–3Al–1Zn–1Ca alloy prepared by high-frequency electromagnetic casting, Materials & Design, 2009, 30 (10), 4120-4125.
  10.    Ogawa, N., Shiomi, M., Osakada, K., Forming limit of magnesium alloy at elevated temperatures for precision forging, International Journal of Machine Tools and Manufacture, 2002, 42 (5), 607-614.
  11.    Junwei, L., Shiqiang, L., Jianbao, H., Zipeng, O., Mingliang, R., The effect of microstructure and the related bio-corrosion behavior of AZ91D Mg alloy in SBF artificial body fluid, Anti-Corrosion Methods and Materials, 2015, 62 (3), 182-186.
  12.    Pardo, A., Merino, M., Coy, AE., Arrabal, R., Viejo, F., Matykina, E., Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl, Corrosion Science, 2008, 50 (3), 823-834.
  13.    Pardo, A., Merino, M., Coy, A., Viejo, F., Arrabal, R., Feliú, S., Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys in chloride media, Electrochimica Acta, 2008, 53 (27), 7890-7902.
  14.    Song, G.L., Xu, Z., The surface, microstructure and corrosion of magnesium alloy AZ31 sheet, Electrochimica Acta, 2010, 55 (13), 4148-4161.
  15.    Aung, N.N., Zhou, W., Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy, Corrosion Science, 2010, 52 (2), 589-594.
  16.    Zhang, J.l., Liu, Y.l., Liu, J., Yu, Y.c., Wang, S.b., The effect of Gd element and solution treatment on the microstructure of AZ31 magnesium alloy and its kinetic model, Journal of Alloys and Compounds, 2016, 663, 610-616.
  17.    Kaibyshev, O., Kazachkov, I., Zaripov, N., The influence of texture on the mechanical properties of a superplastic magnesium alloy, Journal of materials science, 1988, 23 (12), 4369-4374.
  18.    Chino, Y., Kimura, K., Mabuchi, M., Twinning behavior and deformation mechanisms of extruded AZ31 Mg alloy, Materials Science and Engineering, 2008, 486 (1), 481-488.
  19.    Fan, H., El-Awady, J.A., Molecular Dynamics Simulations of Orientation Effects During Tension, Compression, and Bending Deformations of Magnesium Nanocrystals, Journal of Applied Mechanics, 2015, 82 (10), 101006.
  20.    Ball, E., Prangnell, P., Tensile-compressive yield asymmetries in high strength wrought magnesium alloys, Scripta Metallurgica et Materialia, 1994, 31 (2), 111-116.
  21.    Gharghouri, M., Weatherly, G., Embury, J., Root, J., Study of the mechanical properties of Mg-7.7 at.% Al by in-situ neutron diffraction, Philosophical Magazine A, 1999, 79 (7), 1671-1695.
  22.    Kleiner, S., Uggowitzer, P., Mechanical anisotropy of extruded Mg–6% Al–1% Zn alloy, Materials Science and Engineering, 2004, 379 (1), 258-263.
  23.    Wang, Y., Huang J., The role of twinning and untwinning in yielding behavior in hot-extruded Mg–Al–Zn alloy, Acta materialia, 2007, 55 (3), 897-905.
  24.    Bohlen, J., Dobron, P., Meza Garcia, E., Chmelík, F., Lukáč, P., Letzig, D., et al., The effect of grain size on the deformation behaviour of magnesium alloys investigated by the acoustic emission technique, Advanced Engineering Materials, 2006, 8(5), 422-427.
  25.    Meza-García, E., Dobroň, P., Bohlen, J., Letzig, D., Chmelík, F., Lukáč, P., et al., Deformation mechanisms in an AZ31 cast magnesium alloy as investigated by the acoustic emission technique, Materials Science and Engineering, 2007, 462 (1), 297-301.
  26.    Hänzi, A.C., Gunde, P., Schinhammer, M., Uggowitzer, P.J., On the biodegradation performance of an Mg–Y–RE alloy with various surface conditions in simulated body fluid, Acta biomaterialia, 2009, 5(1), 162-171.
  27.    Zhang, Y., Forsyth, M., Hinton, B., Wallace, G.G., Control of biodegradation of a Mg alloy in simulated body fluid, 18th International Corrosion Congress 2011 (pp. 1813-1820). USA: Australasian Corrosion Association.
  28.    Zhang, Y., Hinton, B., Wallace, G., Liu, X., Forsyth, M., On corrosion behaviour of magnesium alloy AZ31 in simulated body fluids and influence of ionic liquid pretreatments, Corrosion engineering, science and technology, 2012, 47 (5), 374-382.
  29.    Tang, H., Wu, T., Xu, F., Tao, W., Jian, X., Fabrication and Characterization of Mg (OH)(2) Films on AZ31 Magnesium Alloy by Alkali Treatment, International Journal of Electrochemical Science, 2017, 12 (2), 1377-1388.
  30.    Song, G., Atrens, A., Understanding magnesium corrosion—a framework for improved alloy performance, Advanced engineering materials, 2003, 5 (12), 837-858.
  31.    Song, G.L., Atrens, A., Corrosion mechanisms of magnesium alloys, Advanced engineering materials, 1999, 1 (1), 11-33.
  32.    Zong, Q., Wang, L., Sun, W., Liu, G., Active deposition of bis (8-hydroxyquinoline) magnesium coating for enhanced corrosion resistance of AZ91D alloy, Corrosion Science, 2014, 89, 127-136.
  33.    Ralston, K., Birbilis, N., Effect of grain size on corrosion: a review, Corrosion, 2010, 66 (7), 075005-075013.
  34.    Orlov, D., Ralston, K., Birbilis, N., Estrin, Y., Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing, Acta Materialia,. 2011, 59 (15), 6176-6186.
  35.    Song, G.L., Xu, Z., Effect of microstructure evolution on corrosion of different crystal surfaces of AZ31 Mg alloy in a chloride containing solution, Corrosion Science, 2012, 54, 97-105.
  36.    Ben-Hamu, G., Eliezer, A., Gutman, E., Retracted: Electrochemical behavior of magnesium alloys strained in buffer solutions, Electrochimica acta, 2006, 52 (1), 304-313.
  37.    Kokubo, T., Takadama, H., How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 2006, 27 (15), 2907-2915.
  38.    Lu, L., Liu, T., Chen, J., Wang, Z., Microstructure and corrosion behavior of AZ31 alloys prepared by dual directional extrusion, Materials & Design (1980-2015), 2012, 36, 687-693.