Skip to main content

Whisking Musculature

  • Chapter
  • First Online:
Scholarpedia of Touch

Part of the book series: Scholarpedia ((SCHP))

  • 2268 Accesses

Abstract

Whisking musculature is represented by a group of facial striated muscles that have their insertion sites within the mystacial pad and control vibrissa movements in whisking mammals. The role of the vibrissa movements in active rats for equilibration, determining nearness or position of edges or corners, as well as discrimination of inequalities of surface as a compensation for a poor vision was described for the first time by Vincent, Behav Monog 1: 1–81. 1912.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 189.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahissar, E and Knutsen, P M (2008). Object localization with whiskers. Biological Cybernetics 98: 449–458.

    Google Scholar 

  • Anjum F; Turni, H; Mulder, P G H; van der Burg, J and Brecht, M (2006). Tactile guidance of pray capture in Etruscan shrews. Proceedings of the National Academy of Sciences of the United States of America 103: 16544–16549.

    Google Scholar 

  • Berg, R W and Kleinfeld, D (2003). Rhythmic whisking by rat: Retraction as well as protraction of the vibrissae is under active muscular control. Journal of Neurophysiology 89: 104–117.

    Google Scholar 

  • Brecht, M; Grinevich, V; Jin, T E; Margrie, T and Osten, P (2006). Cellular mechanisms of motor control in the vibrissal system. Pflügers Archiv European Journal of Physiology 453: 269–281.

    Google Scholar 

  • Deutsch, D; Pietr, M; Knutsen, P M; Ahissar, E and Schneidman, E (2012). Fast feedback in active sensing: Touch-induced changes to whisker-object interaction. PLoS ONE 7: e44272.

    Google Scholar 

  • Dörfl, J (1982). The musculature of the mystacial vibrissae of the white mouse. Journal of Anatomy 135: 147–154.

    Google Scholar 

  • Dörfl, J (1985). The innervation of the mystacial region of the white mouse: A topographical study. Journal of Anatomy 142: 173–184.

    Google Scholar 

  • Edgerton, V R and Simpson, D R (1969). The intermediate muscle fiber of rats and guinea pigs. Journal of Histochemistry & Cytochemistry 17: 828–838.

    Google Scholar 

  • Erzurumlu, R S and Killackey, H P (1979). Efferent connections of the brainstem trigeminal complex with the facial nucleus of the rat. Journal of Comparative Neurology 188: 75–86.

    Google Scholar 

  • Fundin, B T; Pfaller, K and Rice F L (1997). Different distributions of the sensory and autonomic innervation among the microvasculature of the rat mystacial pad. Journal of Comparative Neurology 389: 545–568.

    Google Scholar 

  • Gans, C (1982). Fiber architecture and muscle function. Exercise and Sport Science Reviews 10: 160–207.

    Google Scholar 

  • Gauthier, G F and Padykula, H A (1966). Cytological studies of fiber types in skeletal muscle. A comparative study of the mammalian diaphragm. The Journal of Cell Biology 28: 333–354.

    Google Scholar 

  • Grant, R A; Mitchinson, B; Fox, C W and Prescott, T J (2009). Active touch sensing in the rat: anticipatory and regulatory control of whisker movements during surface exploration. Journal of Neurophysiology 101: 862–874.

    Google Scholar 

  • Grant, R A; Haidarliu, S; Kennerley, N J and Prescott, T J (2013). The evolution of active vibrissal sensing in mammals: Evidence from vibrissal musculature and function in the marsupial opossum Monodelphis domestica. Journal of Experimental Biology 216: 3483–3494.

    Google Scholar 

  • Grant, R A; Mitchinson, B and Prescott, T J (2012). The development of whisker control in rats in relation to locomotion. Developmental Psychobiology 54: 151–168.

    Google Scholar 

  • Grant, R A et al. (2014). Abnormalities in whisking behavior are associated with lesions in brain stem nuclei in a mouse model of amyotrophic lateral sclerosis. Behavioural Brain Research 259: 274–283.

    Google Scholar 

  • Guth, L and Yellin, H (1971). The dynamic nature of the so-called ``fiber types’’ of mammalian skeletal muscle. Experimental Neurology 31: 227–300.

    Google Scholar 

  • Haidarliu, S; Kleinfeld, D; Deschenes, M and Ahissar, E (2015). The musculature that drives active touch by vibrissae and nose in mice. The Anatomical Record 298: 1347–1358. In press.

    Google Scholar 

  • Haidarliu, S; Simony, E; Golomb, D and Ahissar, E (2010). Muscle architecture in the mystacial pad of the rat. The Anatomical Record 293: 1192–1206.

    Google Scholar 

  • Hill, D N; Bermejo, R; Zeigler, H P and Kleinfeld, D (2008). Biomechanics of the vibrissa motor plant in rat: Rhythmic whisking consists of triphasic neuromuscular activity. The Journal of Neuroscience 28: 3438–3455.

    Google Scholar 

  • Huber, E (1930). Evolution of the facial musculature and cutaneous field of the trigeminus: Part I. The Quarterly Review of Biology 5: 133–188.

    Google Scholar 

  • Huber, E (1930). Evolution of the facial musculature and cutaneous field of the trigeminus: Part II. The Quarterly Review of Biology 5: 389–437.

    Google Scholar 

  • Huber, E and Hughson, W (1926). Experimental studies on the voluntary motor innervation of the facial musculature. Journal of Comparative Neurology 42: 113–163.

    Google Scholar 

  • Jin, T E; Witzemann, V and Brecht, M (2004). Fiber types of the intrinsic whisker muscle and whisking behavior. The Journal of Neuroscience 245: 3386–3393.

    Google Scholar 

  • Kablar, B and Rudnicki, M A (2000). Skeletal muscle development in the mouse embryo. Histology and Histopathology 15: 649–656.

    Google Scholar 

  • Katsura, S; Ishizuka, H; Matsumoto, H and Nakae, Y (1982). Histochemical studies on the architecture of rat masseter muscle. Acta Histochemica et Cytochemica 15: 527–536.

    Google Scholar 

  • Kleinfeld, D; Berg, R W and O’Connor, S M (1999). Anatomical loops and their electrical dynamics in relation to whisking by rat. Somatosensory & Motor Research 16: 69–88.

    Google Scholar 

  • Klingener, D (1964). The comparative myology of four dipodoid rodents (Genera Zapus, Napeozapus, Sicista, and Jaculus). Miscellaneous Publications Museum of Zoology University of Michigan 124: 1–100.

    Google Scholar 

  • Knutsen, P M and Ahissar, E (2008). Orthogonal coding of object location. Trends in Neurosciences 32: 101–109. doi:1016/j.tins.2008. 10.002.

    Google Scholar 

  • Landers, M and Zeigler, H P (2006). Development of rodent whisking: Trigeminal input and central pattern generation. Somatosensory & Motor Research 23: 1–10.

    Google Scholar 

  • Lieber, R L and Fridén, J (2002). Functional and clinical significance of skeletal muscle architecture. Muscle Nerve 23: 1647–1666.

    Google Scholar 

  • Mameli, O et al. (2008). Hypoglossal nuclei participation in rat mystacial pad control. Pflügers Archiv European Journal of Physiology 456: 1189–1198. doi:10.1007/s00424-008-0472-y.

    Google Scholar 

  • McComas, A J (1996). Skeletal Muscle: Form and Function. Champaign, Illinois, USA: Human Kinetics. ISBN 10: 0873227808 / ISBN 13: 9780873227803.

    Google Scholar 

  • Meinertz, T (1944). Das superfizielle Facialisgebiet der Nager. VII. Die hystricomorphen Nager. Zeitschr Anat Entwicklungsgesch 113: 1–38.

    Google Scholar 

  • Mitchinson, B et al. (2011). Active vibrissal sensing in rodents and marsupials. Philosophical Transactions of the Royal Society B 366: 3037–3048. doi:10.1098/rstb.2011.0156.

    Google Scholar 

  • Munz, M; Brecht, M and Wolfe, J (2010). Active touch during shrew prey capture. Frontiers in Behavioral Neuroscience 4: 191. doi:10.3389/fnbeh.2010.00191. eCollection 2010.

  • Padykula, H A and Gauthier, G F (1963). Cytochemical studies of adenosine triphosphatases in skeletal muscle fibers. The Journal of Cell Biology 48: 87–107.

    Google Scholar 

  • Pette, D and Staron, R S (1997). Mammalian skeletal muscle fiber type transitions. International Review of Cytology 170: 143–223.

    Google Scholar 

  • Priddy, R B and Brodie A F (1948). Facial musculature, nerves and blood vessels of the hamster in relation to the cheek pouch. Journal of Morphology 83: 149–180.

    Google Scholar 

  • Rice, F L (1993). Structure, vascularization, and innervation of the mystacial pad of the rat as revealed by the lectin Griffonia simplicifolia. Journal of Comparative Neurology 337: 386–399.

    Google Scholar 

  • Rice, F L; Kinnman, E; Aldskogius, H; Johansson, O and Arvidsson, J (1993). The innervation of the mystacial pad of the rat as revealed by PGP 9.5 immunifluorescence. Journal of Comparative Neurology 337: 366–385.

    Google Scholar 

  • Rice, F L; Mance, A and Munger B L (1986). A comparative light microscopic analysis of the sensory innervation of the mystacial pad. I. Innervation of vibrissal follicle-sinus complexes. Journal of Comparative Neurology 252: 154–174.

    Google Scholar 

  • Rinker, G C (1954). The comparative myology of the mammalian genera Sigmodon, Oryzomys, Neotoma, and Peromyscus (Cricetinae), with remarks on their intergeneric relationships. Miscellaneous Publications Museum of Zoology University of Michigan 83: 1–125.

    Google Scholar 

  • Ryan, J M (1989). Comparative myology and polygenetic systematics of the Heteromyidae (Mammalia, Rodentia). Miscellaneous Publications Museum of Zoology University of Michigan 176: 1–103.

    Google Scholar 

  • Sachdev, R N S; Sato, T and Ebner, F F (2002). Divergent movement of adjacent whiskers. Journal of Neurophysiology 87: 1440–1448. doi:10.1152/jn.00539.2001.

    Google Scholar 

  • Saig, A; Gordon, G; Assa, E; Ariely A and Ahissar, E (2012). Motor-sensory confluence in tactile perception. The Journal of Neuroscience 32: 14022–14032.

    Google Scholar 

  • Scott, W; Stevens, J and Binder-Macleod S A (2001). Human skeletal muscle fiber type classifications. Physical Therapy 81: 1810–1816.

    Google Scholar 

  • Semba, K and Egger, M D (1986). The facial “motor” nerve of the rat: Control of vibrissal movement and examination of motor and sensory components. Journal of Comparative Neurology 247: 144–158.

    Google Scholar 

  • Sherman, D et al. (2013). Tactile modulation of whisking via the brainstem loop: Statechart modeling and experimental validation. PLoS ONE 8: e79831.

    Google Scholar 

  • Simony, E et al. (2010). Temporal and spatial characteristics of vibrissa responses to motor commands. The Journal of Neuroscience 30: 8935–8952.

    Google Scholar 

  • Staron, R S (1997). Human skeletal muscle fiber types: Delineation, development, and distribution. Canadian Journal of Applied Physiology 22: 307–327.

    Google Scholar 

  • Tiriac, A; Uitermarkt, B D; Fanning, A S; Sokoloff, G and Blumberg, M S (2012). Rapid whisker movements in sleeping newborn rats. Current Biology 22: 2075–2080.

    Google Scholar 

  • Tomanek, R J; Asmundson, C R; Cooper, R R and Barnard, R J (1973). Fine structure of fast-twitch and slow-twitch guinea pig muscle fibers. Journal of Morphology 139: 47–66.

    Google Scholar 

  • Towal, R B and Hartmann, M J (2006). Right-left asymmetries in the whisking behavior of rats anticipate head movements. The Journal of Neuroscience 26: 8838–8846.

    Google Scholar 

  • Towal R B; Quist, B W; Gopal, V; Solomon, J H and Hartmann, M J Z (2011). The morphology of the rat vibrissal array: A model for quantifying spatiotemporal patterns of whisker-object contact. PLoS Computational Biology 7: e1001120.

    Google Scholar 

  • Vincent, S B (1912). The function of the vibrissae in the behavior of the white rat. Behav Monog 1: 1–81.

    Google Scholar 

  • Vincent, S B (1913). The tactile hair of the white rat. Journal of Comparative Neurology 23: 1–34.

    Google Scholar 

  • Welker, W I. (1964). Analysis of sniffing of the albino rat. Behavior 22: 223–244.

    Google Scholar 

  • White, K K and Vaughan, D W (1991). The effects of age on atrophy and recovery in denervated fiber types of the rat nasolabialis muscle. The Anatomical Record 229: 149–158.

    Google Scholar 

  • Wineski, L E (1985). Facial morphology and vibrissal movement in the golden hamster. Journal of Morphology 183: 199–217.

    Google Scholar 

  • Woolsey, T A; Welker, C and Schwartz R H (1975). Comparative anatomical studies of the Sml face cortex with special reference to the occurrence of “barrels” in layer IV. Journal of Comparative Neurology 164: 79–94.

    Google Scholar 

  • Yamakado, M and Yohro, T (1979). Subdivision of mouse vibrissae on an embryological basis, with descriptions of variations in the number and arrangement of sinus hairs and cortical barrels in BALB/c (nu/+ ; nude, nu/nu) and hairless (hr/hr) strains. American Journal of Anatomy 155: 153–174.

    Google Scholar 

  • Yohro, T (1977). Arrangement and structure of sinus hair muscles in the big-clawed shrew, Sorex unguiculatus. Journal of Morphology 153: 317–331.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Atlantis Press and the author(s)

About this chapter

Cite this chapter

Haidarliu, S. (2016). Whisking Musculature. In: Prescott, T., Ahissar, E., Izhikevich, E. (eds) Scholarpedia of Touch. Scholarpedia. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-133-8_47

Download citation

  • DOI: https://doi.org/10.2991/978-94-6239-133-8_47

  • Published:

  • Publisher Name: Atlantis Press, Paris

  • Print ISBN: 978-94-6239-132-1

  • Online ISBN: 978-94-6239-133-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics