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ABSTRACT 
We present high-resolution (3- to 20-cm interval) whole-core magnetic susceptibility logs for Sites 657 through 661 

and Sites 665 through 668 cored during Leg 108. These logs provide the potential for detailed within-site correlation of 
offset holes, and by reflecting variations in the concentration of terrigenous material also may be significant for envi
ronmental studies. 

tration of terrigenous material, they also may be useful for pa
leoenvironmental studies (e.g., Kent, 1982; Robinson, 1986). 
Between-hole correlations for Leg 108 sites are given in individ
ual site chapters (this volume). This chapter provides the down
hole plots of all whole-core susceptibility logs obtained during 
Leg 108 and enables us to assess the character and quality of the 
records. This chapter complements contributions from P. Schult-
heiss, J. Mienert, and Shipboard Scientific Party members (this 
volume), which provide downhole plots of both whole-core, 
P-wave velocity and GRAPE density logs. 

INSTRUMENTATION AND METHODS 
Measurements were performed using the shipboard Barting

ton Instruments MSI susceptibility meter, interfaced with a DEC 
PRO 350 microcomputer, together with an 8-cm inside diameter 
Bartington Instruments MS1CX whole-core scanning sensor that 
generated a 0.34-mT alternating field with a frequency of 147 
Hz. The sensitivity of the instrument is about 10 x I0 - 6 S1 
units. Figure 1 shows the response of this sensor to the horizon
tal displacement of a thin, discoidal stratum 6.8 cm in diameter. 
We used a point of 66% signal attenuation to estimate the effec
tive volume of sediment contributing to the susceptibility signal 
(about 80 cm3). The results obtained using this assumption were 
comparable to the results obtained from subsequent volume sus
ceptibility measurements of discrete samples. 

During laboratory operation, unsplit cores were pushed manu
ally through the sensor, and measurements performed at inter
vals of from 3 to 20 cm, depending upon time available and the 
observed frequency of susceptibility variations. We could mea
sure one 9.5-m-long core in 3-cm intervals in about 1 hr. Data 
for each core section were stored on floppy diskettes, transferred 
to the shipboard VAX 11/750 computer, and plotted on a Hew
lett-Packard 7475A graph plotter. This procedure could be im
proved significantly by automating the passage of the cores 
through the susceptibility sensor and by providing a dedicated 
graph plotter so that results for each core could be displayed im
mediately after measuring. Depths below the seafloor (mbsf) 
were estimated by assuming that the top of each hole was 
0 mbsf. Subsequent depths were calculated from the core and 
section length, and data were filed routinely on the VAX 11/750 
computer. 

RESULTS 
Figures 2 through 16 show the whole-core susceptibility logs. 

The log for each hole is divided into 30-m intervals; voids of 
1 m long or greater are denoted by a vertical line terminated by 
horizontal bars. 

INTRODUCTION 

During Leg 108 we tried routinely to obtain high-resolution 
(3- to 20-cm intervals) magnetic-susceptibility logs from whole 
cores of the recovered sediment. Our main objective was to use 
these data for obtaining detailed within-site correlations between 
holes. This would enable us to generate a stratigraphically "com
plete" composite section from two or more offset holes at a site 
by bypassing core breaks, other disturbed intervals, and inter
vals with no recovery. The value of whole-core susceptibility 
logging for rapid correlation of lake-sediment sections has been 
demonstrated (e.g., Thompson et al., 1975; Bloemendal et al., 
1979), but so far this technique has not been used much for cor
relating marine sediments. Because susceptibility records from 
deep-sea sediments frequently reflect variations in the concen-
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Figure 1. Response of the Bartington Instruments MSICX susceptibility sensor to the horizontal displacement of a 
thin, discoidal stratum 6.8 cm in diameter. 

0-30 m 30-60 m 60-90 m 90-120 m 120-149 m 

Figure 2. Whole-core magnetic susceptibility log for Hole 657A. In this, 
and in all subsequent logs, the increment for the depth axis is 1 m and 
that for the susceptibility axis is 100 x I0 - 6 S1 units of volume 
susceptibility. 

Measurements generally were confined to advanced piston 
corer (APC) cores. Extended-core barrel (XBC) cores were highly 
disturbed, and significant variations in the diameter of the sedi
ment column occurred within the core liner and, hence, in the 

volume of material contributing to the susceptibility signal. At 
Site 658, we could obtain reliable measurements only from 
about the upper 10 cores because of the numerous voids in sub
sequent cores generated by the presence of significant volumes 
of free gas. At Sites 662 through 664, susceptibilities generally 
were low (less than about 50 x I 0 - 6 S1 units), and patterns of 
variation could not be repeated between cores covering the same 
below seafloor depth intervals. We concluded that the obtained 
results reflected a combination of the intrinsic magnetic proper
ties of the core liners and any contaminants introduced during 
coring. In Hole 666A, the 150-m sequence that was cored con
tained numerous turbidite sands, and the second, offset, hole 
was cancelled. Consequently, susceptibility measurements were 
terminated before reaching the base of the hole. 
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Figure 3. Whole-core magnetic susceptibility log for Hole 657B. 
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Figure 4. Whole-core magnetic susceptibility logs for Holes 658A and 658B. 
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Figure 5. Whole-core magnetic susceptibility log for Hole 659A. 
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Figure 6. Whole-core magnetic susceptibility log for Hole 659B. 
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Figure 7. Whole-core magnetic susceptibility log for Hole 659C. 
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susceptibility log for Hole 660A. 
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Figure 9. Whole-core magnetic susceptibility log for Hole 660B. 
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Figure 10. Whole-core magnetic susceptibility log for Hole 661A. 
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Figure 11. Whole-core magnetic susceptibility log for Hole 661B. 
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Figure 12. Whole-core magnetic susceptibility logs for Holes 665A and 665B. 
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Figure 13. Whole-core magnetic susceptibility log for Hole 666A. 
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Figure 14. Whole-core magnetic susceptibility log for Hole 667A. 
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Figure 15. Whole-core magnetic susceptibility log for Hole 667B. 
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Figure 16. Whole-core magnetic susceptibility logs for Holes 668A and 
668B. 
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