Li JT, Wang GC, Yue Z, Liu JY, Li J et al. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization. Opto-Electron Adv 5, 210062 (2022). doi: 10.29026/oea.2022.210062
Citation: Li JT, Wang GC, Yue Z, Liu JY, Li J et al. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization. Opto-Electron Adv 5, 210062 (2022). doi: 10.29026/oea.2022.210062

Original Article Open Access

Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization

More Information
  • If a metalens integrates the circular polarization (CP) conversion function, the focusing lens together with circular-polarizing lens (CPL) in traditional cameras may be replaced by a metalens. However, in terahertz (THz) band, the reported metalenses still do not obtain the perfect and strict single-handed CP, because they were constructed via Pancharatnam-Berry phase so that CP conversion contained both left-handed CP (LCP) and right-handed CP (RCP) components. In this paper, a silicon based THz metalens is constructed using dynamic phase to obtain single-handed CP conversion. Also, we can rotate the whole metalens at a certain angle to control the conversion of multi-polarization states, which can simply manipulate the focusing for incident linear polarization (LP) THz wave in three polarization conversion states, including LP without conversion, LCP and RCP. Moreover, the polarization conversion behavior is reversible, that is, the THz metalens can convert not only the LP into arbitrary single-handed CP, but also the LCP and RCP into two perpendicular LP, respectively. The metalens is expected to be used in advanced THz camera, as a great candidate for traditional CPL and focusing lens group, and also shows potential application in polarization imaging with discriminating LCP and RCP.
  • 加载中
  • [1] Wu PC, Tsai WY, Chen WT, Huang YW, Chen TY et al. Versatile polarization generation with an aluminum plasmonic metasurface. Nano Lett 17, 445–452 (2017). doi: 10.1021/acs.nanolett.6b04446

    CrossRef Google Scholar

    [2] Cheng YZ, Fan JP, Luo H, Chen F. Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial. IEEE Access 8, 7615–7621 (2020). doi: 10.1109/ACCESS.2019.2962299

    CrossRef Google Scholar

    [3] Costa F, Borgese M. Systematic design of transmission-type polarization converters comprising multilayered anisotropic metasurfaces. Phys Rev Appl 14, 034049 (2020). doi: 10.1103/PhysRevApplied.14.034049

    CrossRef Google Scholar

    [4] Gao YJ, Xiong X, Wang ZH, Chen F, Peng RW et al. Simultaneous generation of arbitrary assembly of polarization states with geometrical-scaling-induced phase modulation. Phys Rev X 10, 031035 (2020).

    Google Scholar

    [5] Wang S, Deng ZL, Wang YJ, Zhou QB, Wang XL et al. Arbitrary polarization conversion dichroism metasurfaces for all-in-one full Poincaré sphere polarizers. Light: Sci Appl 10, 24 (2021). doi: 10.1038/s41377-021-00468-y

    CrossRef Google Scholar

    [6] Deng ZL, Deng JH, Zhuang X, Wang S, Li K et al. Diatomic metasurface for vectorial holography. Nano Lett 18, 2885–2892 (2018). doi: 10.1021/acs.nanolett.8b00047

    CrossRef Google Scholar

    [7] Chang CC, Zhao ZX, Li DF, Taylor AJ, Fan SH et al. Broadband linear-to-circular polarization conversion enabled by birefringent off-resonance reflective metasurfaces. Phys Rev Lett 123, 237401 (2019). doi: 10.1103/PhysRevLett.123.237401

    CrossRef Google Scholar

    [8] Ding F, Chang BD, Wei QS, Huang LL, Guan XW et al. Versatile polarization generation and manipulation using dielectric metasurfaces. Laser Photonics Rev 14, 2000116 (2020). doi: 10.1002/lpor.202000116

    CrossRef Google Scholar

    [9] Liu J, Shi MQ, Chen Z, Wang SM, Wang ZL et al. Quantum photonics based on metasurfaces. Opto-Electron Adv 4, 200092 (2021). doi: 10.29026/oea.2021.200092

    CrossRef Google Scholar

    [10] Shalaginov MY, An SS, Yang F, Su P, Lyzwa D et al. Single-element diffraction-limited fisheye metalens. Nano Lett 20, 7429–7437 (2020). doi: 10.1021/acs.nanolett.0c02783

    CrossRef Google Scholar

    [11] Zentgraf T. Imaging the rainbow. Nat Nanotechnol 13, 179–180 (2018). doi: 10.1038/s41565-018-0062-x

    CrossRef Google Scholar

    [12] Balli F, Sultan M, Lami SK, Hastings JT. A hybrid achromatic metalens. Nat Commun 11, 3892 (2020). doi: 10.1038/s41467-020-17646-y

    CrossRef Google Scholar

    [13] Rubin NA, D’Aversa G, Chevalier P, Shi ZJ, Chen WT et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 365, eaax1839 (2019). doi: 10.1126/science.aax1839

    CrossRef Google Scholar

    [14] Krasnok A. Metalenses go atomically thick and tunable. Nat Photonics 14, 409–410 (2020). doi: 10.1038/s41566-020-0648-3

    CrossRef Google Scholar

    [15] Wang YL, Fan QB, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electron Adv 4, 200008 (2021). doi: 10.29026/oea.2021.200008

    CrossRef Google Scholar

    [16] Yoon G, Kim K, Huh D, Lee H, Rho J. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat Commun 11, 2268 (2020). doi: 10.1038/s41467-020-16136-5

    CrossRef Google Scholar

    [17] Yoon G, Kim K, Kim SU, Han S, Lee H et al. Printable nanocomposite metalens for high-contrast near-infrared imaging. ACS Nano 15, 698–706 (2021). doi: 10.1021/acsnano.0c06968

    CrossRef Google Scholar

    [18] Moon SW, Kim Y, Yoon G, Rho J. Recent progress on ultrathin metalenses for flat optics. iScience 23, 101877 (2020). doi: 10.1016/j.isci.2020.101877

    CrossRef Google Scholar

    [19] Wang JY, Fan JP, Shu H, Liu C, Cheng YZ. Efficiency-tunable terahertz focusing lens based on graphene metasurface. Opto-Electron Eng 48, 200319 (2021).

    Google Scholar

    [20] Fan JP, Cheng YZ, He B. High-Efficiency ultrathin terahertz geometric metasurface for full-space wavefront manipulation at two frequencies. J Phys D:Appl Phys 54, 115101 (2021). doi: 10.1088/1361-6463/abcdd0

    CrossRef Google Scholar

    [21] Gao H, Fan XH, Xiong W, Hong MH. Recent advances in optical dynamic meta-holography. Opto-Electron Adv 4, 210030 (2021). doi: 10.29026/oea.2021.210030

    CrossRef Google Scholar

    [22] Zang XF, Ding HZ, Intaravanne Y, Chen L, Peng Y et al. A multi-foci metalens with polarization-rotated focal points. Laser Photonics Rev 13, 1900182 (2019). doi: 10.1002/lpor.201900182

    CrossRef Google Scholar

    [23] Fan JP, Cheng YZ. Broadband high-efficiency cross-polarization conversion and multi-functional wavefront manipulation based on chiral structure metasurface for terahertz wave. J Phys D: Appl Phys 53, 025109 (2020). doi: 10.1088/1361-6463/ab4d76

    CrossRef Google Scholar

    [24] Wang Q, Zhang XQ, Xu YH, Tian Z, Gu JQ et al. A broadband metasurface-based terahertz flat-lens array. Adv Opt Mater 3, 779–785 (2015). doi: 10.1002/adom.201400557

    CrossRef Google Scholar

    [25] Gao S, Park CS, Zhou CY, Lee SS, Choi DY. Twofold polarization-selective all-dielectric trifoci metalens for linearly polarized visible light. Adv Opt Mater 7, 1900883 (2019). doi: 10.1002/adom.201900883

    CrossRef Google Scholar

    [26] Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol 10, 937–943 (2015). doi: 10.1038/nnano.2015.186

    CrossRef Google Scholar

    [27] Zang XF, Xu WW, Gu M, Yao BS, Chen L et al. Polarization-insensitive metalens with extended focal depth and longitudinal high-tolerance imaging. Adv Opt Mater 8, 1901342 (2020). doi: 10.1002/adom.201901342

    CrossRef Google Scholar

    [28] Li JT, Li J, Zheng CL, Wang SL, Li MY et al. Dynamic control of reflective chiral terahertz metasurface with a new application developing in full grayscale near field imaging. Carbon 172, 189–199 (2021). doi: 10.1016/j.carbon.2020.09.090

    CrossRef Google Scholar

    [29] Xu HX, Hu GW, Li Y, Han L, Zhao JL et al. Interference-assisted kaleidoscopic meta-plexer for arbitrary spin-wavefront manipulation. Light: Sci Appl 8, 3 (2019). doi: 10.1038/s41377-018-0113-y

    CrossRef Google Scholar

    [30] Zhou T, Liu Q, Liu YS, Zang XF. Spin-independent metalens for helicity-multiplexing of converged vortices and cylindrical vector beams. Opt Lett 45, 5941–5944 (2020). doi: 10.1364/OL.404436

    CrossRef Google Scholar

    [31] Wu Z, Wang XK, Sun WF, Feng SF, Han P et al. Vector characterization of zero-order terahertz Bessel beams with linear and circular polarizations. Sci Rep 7, 13929 (2017). doi: 10.1038/s41598-017-12524-y

    CrossRef Google Scholar

    [32] Wang XK, Cui Y, Sun WF, Ye JS, Zhang Y. Terahertz real-time imaging with balanced electro-optic detection. Opt Commun 283, 4626–4632 (2010). doi: 10.1016/j.optcom.2010.07.010

    CrossRef Google Scholar

    [33] Li JT, Li J. Terahertz (THz) generator and detection. Electr Sci Eng 2, 11–25 (2020).

    Google Scholar

  • Supplementary information for Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(8257) PDF downloads(1497) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint