Hu A Q, Liu S, Zhao J Y, Wen T, Zhang W D et al. Controlling plasmon‐exciton interactions through photothermal reshaping. Opto‐Electron Adv 3, 190017 (2020). doi: 10.29026/oea.2020.190017
Citation: Hu A Q, Liu S, Zhao J Y, Wen T, Zhang W D et al. Controlling plasmon‐exciton interactions through photothermal reshaping. Opto‐Electron Adv 3, 190017 (2020). doi: 10.29026/oea.2020.190017

Original Article Open Access

Controlling plasmon-exciton interactions through photothermal reshaping

More Information
  • We investigated the plasmon-exciton interactions in an individual gold nanorod (GNR) with monolayer MoS2 at room temperature with the single-particle spectroscopy technique. To control the plasmon-exciton interaction, we tuned the local surface plasmon resonance of an individual GNR in-situ by employing the photothermal reshaping effect. The scattering spectra of the GNR-MoS2 hybrids exhibited two dips at the frequencies of the A and B excitons of monolayer MoS2, which were caused by the plasmon-induced resonance energy transfer effect. The resonance energy transfer rate increased when the surface plasmon resonance of the nanorod matched well with the exciton transition energy. Also, we demonstrated that the plasmon-enhanced fluorescence process dominated the photoluminescence of the GNR-MoS2 hybrid. These results provide a flexible way to control the plasmon-exciton interaction in an all-solid-state operating system at room temperature.
  • 加载中
  • [1] Wang M S, Li W, Scarabelli L, Rajeeva B B, Terrones M et al. Plasmon-trion and plasmon-exciton resonance energy transfer from a single plasmonic nanoparticle to monolayer MoS2 Nanoscale 9, 13947-13955 (2017) doi: 10.1039/C7NR03909C

    CrossRef Google Scholar

    [2] Li J T, Cushing S K, Meng F K, Senty T R, Bristow A D et al. Plasmon-induced resonance energy transfer for solar energy conversion Nat Photonics 9, 601-607 (2015) doi: 10.1038/nphoton.2015.142

    CrossRef Google Scholar

    [3] Wang M S, Krasnok A, Zhang T Y, Scarabelli L, Liu H et al. Tunable fano resonance and plasmon-exciton coupling in single Au nanotriangles on monolayer WS2 at room temperature Adv Mater 30, 1705779 (2018) doi: 10.1002/adma.201705779

    CrossRef Google Scholar

    [4] Zhang W, Govorov A O, Bryant G W] Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect Phys Rev Lett 97, 146804 (2006) doi: 10.1103/PhysRevLett.97.146804

    CrossRef Google Scholar

    [5] Lee B, Park J, Han G H, Ee H S, Naylor C H et al. Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array Nano Lett 15, 3646-3653 (2015) doi: 10.1021/acs.nanolett.5b01563

    CrossRef Google Scholar

    [6] Liu X Z, Galfsky T, Sun Z, Xia F N, Lin E C et al. Strong light-matter coupling in two-dimensional atomic crystals Nat Photonics 9, 30-34 (2015) doi: 10.1038/nphoton.2014.304

    CrossRef Google Scholar

    [7] Zheng D, Zhang S P, Deng Q, Kang M, Nordlander P et al. Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2 Nano Lett 17, 3809-3814 (2017) doi: 10.1021/acs.nanolett.7b01176

    CrossRef Google Scholar

    [8] Cuadra J, Baranov D G, Wersäll M, Verre R, Antosiewicz T J et al. Observation of tunable charged exciton polaritons in hybrid monolayer WS2-plasmonic nanoantenna system Nano Lett 18, 1777-1785 (2018) doi: 10.1021/acs.nanolett.7b04965

    CrossRef Google Scholar

    [9] Wersäll M, Cuadra J, Antosiewicz T J, Balci S, Shegai T] Observation of mode splitting in photoluminescence of individual plasmonic nanoparticles strongly coupled to molecular excitons Nano Lett 17, 551-558 (2017) doi: 10.1021/acs.nanolett.6b04659

    CrossRef Google Scholar

    [10] Wen J X, Wang H, Wang W L, Deng Z X, Zhuang C et al. Room-temperature strong light-matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals Nano Lett 17, 4689-4697 (2017) doi: 10.1021/acs.nanolett.7b01344

    CrossRef Google Scholar

    [11] Liu W J, Lee B, Naylor C H, Ee H S, Park J et al. Strong exciton-plasmon coupling in MoS2 coupled with plasmonic lattice Nano Lett 16, 1262-1269 (2016) doi: 10.1021/acs.nanolett.5b04588

    CrossRef Google Scholar

    [12] Kleemann M E, Chikkaraddy R, Alexeev E M, Kos D, Carnegie C et al. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature Nat Commun 8, 1296 (2017) doi: 10.1038/s41467-017-01398-3

    CrossRef Google Scholar

    [13] Gao W, Lee Y H, Jiang R B, Wang J F, Liu T X et al. Localized and continuous tuning of monolayer MoS2 photoluminescence using a single shape-controlled Ag nanoantenna Adv Mater 28, 701-706 (2016) doi: 10.1002/adma.201503905

    CrossRef Google Scholar

    [14] Akselrod G M, Ming T, Argyropoulos C, Hoang T B, Lin Y X et al. Leveraging nanocavity harmonics for control of optical processes in 2D semiconductors Nano Lett 15, 3578-3584 (2015) doi: 10.1021/acs.nanolett.5b01062

    CrossRef Google Scholar

    [15] Najmaei S, Mlayah A, Arbouet A, Girard C, Léotin J et al. Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures Acs Nano 8, 12682-12689 (2014) doi: 10.1021/nn5056942

    CrossRef Google Scholar

    [16] Lee K C J, Chen Y H, Lin H Y, Cheng C C, Chen P Y et al. Plasmonic gold nanorods coverage influence on enhancement of the photoluminescence of two-dimensional MoS2 monolayer Sci Rep 5, 16374 (2015) doi: 10.1038/srep16374

    CrossRef Google Scholar

    [17] Liu J T, Tong H, Wu Z H, Huang J B, Zhou Y S] Greatly enhanced light emission of MoS2 using photonic crystal heterojunction Sci Rep 7, 16391 (2017) doi: 10.1038/s41598-017-16502-2

    CrossRef Google Scholar

    [18] Wang Z, Dong Z G, Gu Y H, Chang Y H, Zhang L et al. Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures Nat Commun 7, 11283 (2016) doi: 10.1038/ncomms11283

    CrossRef Google Scholar

    [19] Johnson A D, Cheng F, Tsai Y, Shih C K] Giant enhancement of defect-bound exciton luminescence and suppression of band-edge luminescence in monolayer WSe2-Ag plasmonic hybrid structures Nano Lett 17, 4317-4322 (2017) doi: 10.1021/acs.nanolett.7b01364

    CrossRef Google Scholar

    [20] Wang Q X, Guo J, Ding Z J, Qi D Y, Jiang J Z et al. Fabry-perot cavity-enhanced optical absorption in ultrasensitive tunable photodiodes based on hybrid 2D materials Nano Lett 17, 7593-7598 (2017) doi: 10.1021/acs.nanolett.7b03579

    CrossRef Google Scholar

    [21] Sobhani A, Lauchner A, Najmaei S, Ayala-Orozco C, Wen F F et al. Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells Appl Phys Lett 104, 031112 (2014) doi: 10.1063/1.4862745

    CrossRef Google Scholar

    [22] Palacios E, Park S, Butun S, Lauhon L, Aydin K] Enhanced radiative emission from monolayer MoS2 films using a single plasmonic dimer nanoantenna Appl Phys Lett 111, 031101 (2017) doi: 10.1063/1.4993427

    CrossRef Google Scholar

    [23] Butun S, Tongay S, Aydin K] Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays Nano Lett 15, 2700-2704 (2015) doi: 10.1021/acs.nanolett.5b00407

    CrossRef Google Scholar

    [24] Mak K F, Lee C, Hone J, Shan J, Heinz T F] Atomically thin MoS2: a new direct-gap semiconductor Phys Rev Lett 105, 136805 (2010) doi: 10.1103/PhysRevLett.105.136805

    CrossRef Google Scholar

    [25] Xu K C, Wu J G, Tan C F, Ho G W, Wei A et al. Ag-CuO-ZnO metal-semiconductor multiconcentric nanotubes for achieving superior and perdurable photodegradation Nanoscale 9, 11574-11583 (2017) doi: 10.1039/C7NR03279J

    CrossRef Google Scholar

    [26] Rahmani M, Leo G, Brener I, Zayats A V, Maier S A et al. Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication Opto-Electron Adv 1, 180021 (2018) doi: 10.29026/oea.2018.180021

    CrossRef Google Scholar

    [27] Upputuri P K, Pramanik M] Microsphere-aided optical microscopy and its applications for super-resolution imaging Opt Commun 404, 32-41 (2017) doi: 10.1016/j.optcom.2017.05.049

    CrossRef Google Scholar

    [28] Zhang L, Gogna R, Burg W, Tutuc E, Deng H] Photonic-crystal exciton-polaritons in monolayer semiconductors Nat Commun 9, 713 (2018) doi: 10.1038/s41467-018-03188-x

    CrossRef Google Scholar

    [29] Stührenberg M, Munkhbat B, Baranov D G, Cuadra J, Yankovich A B et al. Strong light-matter coupling between plasmons in individual gold Bi-pyramids and excitons in mono- and multilayer WSe2 Nano Lett 18, 5938-5945 (2018) doi: 10.1021/acs.nanolett.8b02652

    CrossRef Google Scholar

    [30] Sun J W, Hu H T, Zheng D, Zhang D X, Deng Q et al. Light-emitting plexciton: exploiting plasmon-exciton interaction in the intermediate coupling regime ACS Nano 12, 10393-10402 (2018) doi: 10.1021/acsnano.8b05880

    CrossRef Google Scholar

    [31] Ross J S, Klement P, Jones A M, Ghimire N J, Yan J Q et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions Nat Nanotechnol 9, 268-272 (2014) doi: 10.1038/nnano.2014.26

    CrossRef Google Scholar

    [32] Mak K F, He K L, Lee C, Lee G H, Hone J et al. Tightly bound trions in monolayer MoS2 Nat Mater 12, 207-211 (2013) doi: 10.1038/nmat3505

    CrossRef Google Scholar

    [33] Chikkaraddy R, De Nijs B, Benz F, Barrow S J, Scherman O A et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities Nature 535, 127-130 (2016) doi: 10.1038/nature17974

    CrossRef Google Scholar

    [34] Yorulmaz M, Khatua S, Zijlstra P, Gaiduk A, Orrit M] Luminescence quantum yield of single gold nanorods Nano Lett 12, 4385-4391 (2012) doi: 10.1021/nl302196a

    CrossRef Google Scholar

    [35] He Y B, Lu G W, Shen H M, Cheng Y Q, Gong Q H] Strongly enhanced raman scattering of graphene by a single gold nanorod Appl Phys Lett 107, 053104 (2015) doi: 10.1063/1.4927759

    CrossRef Google Scholar

    [36] Della Picca F, Gutiérrez M V, Bragas A V, Scarpettini A F] Monitoring the photothermal reshaping of individual plasmonic nanorods with coherent mechanical oscillations J Phys Chem C 122, 29598-29606 (2018) doi: 10.1021/acs.jpcc.8b09458

    CrossRef Google Scholar

    [37] Wang J, Chen Y C, Chen X, Hao J M, Yan M et al. Photothermal reshaping of gold nanoparticles in a plasmonic absorber Opt Express 19, 14726-14734 (2011) doi: 10.1364/OE.19.014726

    CrossRef Google Scholar

    [38] Shafiei F, Monticone F, Le K Q, Liu X X, Hartsfield T et al. A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance Nat Nanotechnol 8, 95-99 (2013) doi: 10.1038/nnano.2012.249

    CrossRef Google Scholar

    [39] Lu G W, Hou L, Zhang T Y, Liu J, Shen H M et al. Plasmonic sensing via photoluminescence of individual gold nanorod J Phys Chem C 116, 25509-25516 (2012) doi: 10.1021/jp309450b

    CrossRef Google Scholar

    [40] Shen H M, Chou R Y, Hui Y Y, He Y B, Cheng Y Q et al. Directional fluorescence emission from a compact plasmonic-diamond hybrid nanostructure Laser Photonics Rev 10, 647-655 (2016) doi: 10.1002/lpor.201600021

    CrossRef Google Scholar

    [41] Cao Z M, He Y B, Cheng Y Q, Zhao J Y, Li G T et al. Nano-gap between a gold tip and nanorod for polarization dependent surface enhanced Raman scattering Appl Phys Lett 109, 233103 (2016) doi: 10.1063/1.4971832

    CrossRef Google Scholar

    [42] Zhang T Y, Shen H M, Lu G W, Liu J, He Y B et al. Single bipyramid plasmonic antenna orientation determined by direct photoluminescence pattern imaging Adv Opt Mater 1, 335-342 (2013) doi: 10.1002/adom.201200041

    CrossRef Google Scholar

    [43] Lu G W, Wang Y W, Chou R Y, Shen H M, He Y B et al. Directional side scattering of light by a single plasmonic trimer Laser Photonics Rev 9, 530-537 (2015) doi: 10.1002/lpor.201500089

    CrossRef Google Scholar

    [44] He Y B, Lu G W, Shen H M, Cheng Y Q, Gong Q H] Strongly enhanced Raman scattering of graphene by a single gold nanorod Appl Phys Lett 107, 053104 (2015) doi: 10.1063/1.4927759

    CrossRef Google Scholar

    [45] He Y B, Xia K Y, Lu G W, Shen H M, Cheng Y Q et al. Surface enhanced anti-Stokes one-photon luminescence from single gold nanorods Nanoscale 7, 577-582 (2015) doi: 10.1039/C4NR04879B

    CrossRef Google Scholar

    [46] Zhao J Y, Cao Z M, Cheng Y Q, Xu J N, Wen T et al. In situ optical study of gold nanorod coupling with graphene Adv Opt Mater 6, 1701043 (2018) doi: 10.1002/adom.201701043

    CrossRef Google Scholar

    [47] Xu K C, Wang Z Y, Tan C F, Kang N, Chen L W et al. Uniaxially stretched flexible surface plasmon resonance film for versatile surface enhanced Raman scattering diagnostics ACS Appl Mater Interfaces 9, 26341-26349 (2017) doi: 10.1021/acsami.7b06669

    CrossRef Google Scholar

    [48] Zhao W J, Ghorannevis Z, Chu L Q, Toh M, Kloc C et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2 ACS Nano 7, 791-797 (2013) doi: 10.1021/nn305275h

    CrossRef Google Scholar

    [49] Lu G W, Zhang T Y, Li W Q, Hou L, Liu J et al. Single-molecule spontaneous emission in the vicinity of an individual gold nanorod J Phys Chem C 115, 15822-15828 (2011) doi: 10.1021/jp203317d

    CrossRef Google Scholar

    [50] Zhao J Y, Cheng Y Q, Shen H M, Hui Y Y, Wen T et al. Light emission from plasmonic nanostructures enhanced with fluorescent nanodiamonds Sci Rep 8, 3605 (2018) doi: 10.1038/s41598-018-22019-z

    CrossRef Google Scholar

    [51] Anger P, Bharadwaj P, Novotny L] Enhancement and quenching of single-molecule fluorescence Phys Rev Lett 96, 113002 (2006) doi: 10.1103/PhysRevLett.96.113002

    CrossRef Google Scholar

    [52] Zengin G, Wersäll M, Nilsson S, Antosiewicz T J, Käll M et al. Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions Phys Rev Lett 114, 157401 (2015) doi: 10.1103/PhysRevLett.114.157401

    CrossRef Google Scholar

  • Supplementary information for Controlling plasmon-exciton interactions through photothermal reshaping
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(4836) PDF downloads(510) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint