Document Type : Original Article

Authors

1 Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya

2 Central Laboratory at Sebha University, Sebha, Libya

Abstract

In this study, photocatalytic activity of Ca-doped ceria (CDC) for malachite green (MG) degradation was investigated. CDC was successfully synthesized via co-precipitation method using ammonium oxalate as a precipitating agent. CDC was characterized using Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), UV-Vis spectroscopy, and scanning electron microscopy (SEM). The band gap energy (Eg) of CDC was found to be 3.96 eV. In addition, the factors affecting the photodegradation of MG including; irradiation time, photocatalyst dosage, initial dye concentration, and solution temperature were studied. The results revealed that CDC could degrade approximately 93% of MG dye at the concentration of 6 mg/L, irradiation time of 90 min, photocatalyst dosage of 0.1 g, and solution temperature of 35 °C. The obtained results indicate that CDC is a promising material for the photocatalytic applications and can be used to eliminate very toxic dyes such as MG.

Graphical Abstract

Photocatalytic degradation of malachite green dye under UV light irradiation using calcium-doped ceria nanoparticles

Keywords

[1].  Mousavi M., Habibi-Yangjeh A., Pouran S. R.  J. Mater. Sci. Mater. Electron.,2018, 29:1719
[2]. Chen Y., Zhang Y., Liu C., Lu A., Zhang W. Int. J. Photoenergy., 2012, 2012:1
[3]. Mohamed A., Ghobara M. M., Abdelmaksoud M. K., Mohamed G.G. Sep. Purif. Technol., 2019, 210:935
[4]. Gallego-Urrea J.A., Hammes J., Cornelis G., Hassellöv M. NanoImpact.,  2016, 3-4:67
[5]. Dickhout J.M., Moreno J., Biesheuvel P.M., Boels L., Vos W.M.d., Lammertink R.G.H. J. Colloid Interface Sci., 2017, 487:523
[6]. Gnanam S., Rajendran V. J. Alloys Compd., 2018, 735:1854
[7]. Murugana R., Kashinath L., Subash R., Sakthivel P., Byrappa K., Rajendran S., Ravi G. Mater. Res. Bull., 2018, 97:319
[8]. Al-Anber Z.A., Al-Anber M.A., Matouq M., Al-Ayed O.O., Omari N.M.N.M. Desalination., 2011, 276:169
[9]. Amar I. A., Sharif A., Alkhayali M., Jabji M., Altohami F., AbdulQadir M., Ahwidi M.M. IJEE.,  2018, 9:247
[10]. Awin L.A., El-Rais M.A., Etorki A.M., Mohamed N.A., Erhab H.M. Mater. Focus., 2018, 7:1
[11]. Feizpoor S., Habibi-Yangjeh A. , Yubuta K., Vadivelc S. Mater. Chem. Phys., 2019, 224:10
[12]. Markovic D., Milovanovic S., Radoicic M., Radovanovic Z., Zizovic I., Saponjic Z., Radetic M. J. Serb. Chem. Soc., 2018, 83:1379
[13]. Adepu A.k., Katta V., Venkatathri N. New. J. Chem., 2017, 41:2498
[14]. Pirhashemi M., Habibi-Yangjeh A., Pouran S.R. J. Ind. Eng Chem., 2018, 62:1
[15]. Ayodhya D., Veerabhadram G. Mater. Today. Energy., 2018, 9:83 
[16]. Van Dao D., Nguyen T.T.D., Majhi S.M., Adilbish G., Lee H.J., Yu Y.T., Lee I.H. Mater. Chem. Phys.,  2019, 231:1
[17]. Elahi B., Mirzaee M., Darroudi M., Oskuee R.K., Sadri K., Amiri M.S. Ceram. Int., 2019, 45:4790
[18]. Chandar N.K., Jayavel R. Physica E., 2014, 58:48
[19]. Channei D., Inceesungvorn B., Wetchakun N., Ukritnukun S., Nattestad A., Chen J., Phanichphant S. Sci. Rep., 2014, 4:5757
[20]. Goubin F., Rocquefelte X., Whangbo M.H., Montardi Y., Brec R., Jobic S. Chem. Mater., 2004, 16:662
[21]. Yu J.G., Yang B.C., Shin J.W., Lee S., Oh S., Choi J.H., Jeong J., Noh W., An J. Ceram. Int., 2019, 45:3811
[22]. Amar I.A., Petit C.T. G., Zhang L., Lan R., Skabara P.J., Tao S.W. Solid. State. Ionics., 2011, 201:94
[23]. Amar I.A., Petit C.T.G., Mann G., Lan R., Skabara P.J., Tao S. Int. J. Hydrogen Energy., 2014, 39:4322
[24]. Li H., Wang G., Zhang F., Cai Y., Wang Y., Djerdj I. RSC. Adv., 2012, 2:12413
[25]. Li R., Yabe S., Yamashita M., Momose S., Yoshida S., Yin S., Sato T. Solid. State. Ionics., 2002, 151:235
[26]. Truffault L., Ta M.T., Devers T., Konstantinov K., Harel V., Simmonard C., Andreazza C., Nevirkovets I.P., Pineau A., Veron O., Blondeau J.P. Mater. Res. Bull., 2010, 45:527
[27]. Slostowski C., Marre S., Bassata J.M., Aymonier C. J. Supercrit. Fluids., 2013, 84:89 [28]. Yue L., Zhang X.M. J. Alloys Compd.,  2009, 475:702
[29].   Maria Magdalane C., Kaviyarasu K., Judith Vijaya J., Jayakumar C., Maaza M., Jeyaraj B. J. Photochem. Photobiol., B., 2017, 169:110
[30]. Banerjee S., Devi P.S., Topwal D., Mandal S., Menon K. Adv. Funct. Mater., 2007, 17:2847
[31]. Ma Y., Wang X., Khalifa H.A., Zhu B., Muhammed M. Int. J. Hydrogen Energy., 2012, 37:19401
[32]. Soleimani F., Salehi M., Gholizadeh A. Ceram. Int., 2018, 45:9826.
[33]. Fu Y.P., Chen S.H., Huang J.J. Int. J. Hydrogen Energy., 2010, 35:745
[34]. Matmin J., Jalani M.A., Osman H., Omar Q., Ab’lah N., Elong K., Kasim M.F. Nanomaterials., 2019, 9:264
[35]. He H.Y., Lu J. Sep. Purif. Technol., 2017, 172:374
[36]. Mandal R.K., Purkayastha M.D., Majumder T.P. Optik. 2019, 180:174
[37]. Athawale A.A., Bapat M.S., Desai P.A. J. Alloys Compd., 2009, 484:211
[38]. Prabaharan D.M.D.M., Sadaiyandi K., Mahendran M., Sagadevan S. Mat. Res., 2016, 19:478
[39]. Nezamzadeh-Ejhieh A., Shams-Ghahfarokhi Z. J. Chem., 2013, 2013:11
[40]. Saleh R., Djaja N.F. Superlattices Microstruct., 2014, 74:217
[41]. Sanna V., Pala N., Alzari V., Nuvoli D., Carcelli M. Mater. Lett.,2016, 162:257
[42]. Raja V.R., Karthika A., Kirubahar S.L., Suganthi A., Rajarajan M. Solid. State. Ionics., 2019, 332:55
[43]. Josephine G.A.S., Ramachandran S., Sivasamy A. J. Saudi Chem Soc., 2015, 19:549
[44]. Zhang C., Hen H., Wang N., Chen H., Kong D. Ceram. Int., 2013, 39:3685-3
[45]. Chen C.C., Lu C.S., Chung Y.C., Jan J.L. J. Hazard. Mater., 2007, 141:520
[46]. Saikia L., Bhuyan D., Saikia M., Malakar B., Dutta D.K., Sengupt P. Appl. Catal. A-Gen., 2015, 490:42