Journal Home > Volume 3 , Issue 1

Polymer solar cells (PSCs) with high power conversion efficiency (PCE) and environment-friendly fabrication are the main requirements enabling their production in industrial scale. While the use of non-halogenated solvent processing is inevitable for the PSC fabrication, it significantly reduces the processability of polymer donors (PDS) and small-molecule acceptors (SMAs). This often results in unoptimized blend morphology and limits the device performance. To address this issue, hydrophilic oligoethylene glycol (OEG) side-chains are introduced into a PD (2EG) to enhance the molecular compatibility between the PD and L8-BO SMA. The 2EG PD induces higher crystallinity and alleviates phase separation with the SMA compared to the reference PD (PM7) with hydrocarbon side-chains. Consequently, the 2EG-based PSCs exhibit a higher PCE (15.8%) than the PM7-based PSCs (PCE = 14.4%) in the ortho-xylene based processing. Importantly, benefitted from the reduced phase separation and increased crystallinity of 2EG PDS, the 2EG-based PSCs show enhanced thermal stability (84% of initial PCE after 120 h heating) compared to that of the PM7-based PSCs (60% of initial PCE after 120 h heating). This study demonstrates the potential of OEG side-chain-incorporated materials in developing efficient, stable, and eco-friendly PSCs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Polymer donors with hydrophilic side-chains enabling efficient and thermally-stable polymer solar cells by non-halogenated solvent processing

Show Author's information Soodeok Seo1,§Jun-Young Park2,§Jin Su Park1,§Seungjin Lee3Do-Yeong Choi2Yun-Hi Kim4( )Bumjoon J. Kim1( )
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
Department of Materials Engineering and Convergence Technology and ERI, Gyeongsang National University, Jinju 52828, Republic of Korea
Advanced Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
Department of Chemistry and ERI, Gyeongsang National University, Jinju 52828, Republic of Korea

§ Soodeok Seo and Jun-Young Park and Jin Su Park contributed equally to this work.

Abstract

Polymer solar cells (PSCs) with high power conversion efficiency (PCE) and environment-friendly fabrication are the main requirements enabling their production in industrial scale. While the use of non-halogenated solvent processing is inevitable for the PSC fabrication, it significantly reduces the processability of polymer donors (PDS) and small-molecule acceptors (SMAs). This often results in unoptimized blend morphology and limits the device performance. To address this issue, hydrophilic oligoethylene glycol (OEG) side-chains are introduced into a PD (2EG) to enhance the molecular compatibility between the PD and L8-BO SMA. The 2EG PD induces higher crystallinity and alleviates phase separation with the SMA compared to the reference PD (PM7) with hydrocarbon side-chains. Consequently, the 2EG-based PSCs exhibit a higher PCE (15.8%) than the PM7-based PSCs (PCE = 14.4%) in the ortho-xylene based processing. Importantly, benefitted from the reduced phase separation and increased crystallinity of 2EG PDS, the 2EG-based PSCs show enhanced thermal stability (84% of initial PCE after 120 h heating) compared to that of the PM7-based PSCs (60% of initial PCE after 120 h heating). This study demonstrates the potential of OEG side-chain-incorporated materials in developing efficient, stable, and eco-friendly PSCs.

Keywords: polymer solar cell, polymer donor, OEG side-chain, non-halogenated solvent process, side-chain engineering

References(75)

[1]

Li, Y. W.; Xu, G. Y.; Cui, C. H.; Li, Y. F. Flexible and semitransparent organic solar cells. Adv. Energy Mater. 2018, 8, 1701791.

[2]

Du, X. Y.; Lüer, L.; Heumueller, T.; Wagner, J.; Berger, C.; Osterrieder, T.; Wortmann, J.; Langner, S.; Vongsaysy, U.; Bertrand, M. et al. Elucidating the full potential of OPV materials utilizing a high-throughput robot-based platform and machine learning. Joule 2021, 5, 495–506.

[3]

Chen, S. S.; Jung, S.; Cho, H. J.; Kim, N. H.; Jung, S.; Xu, J. Q.; Oh, J.; Cho, Y.; Kim, H.; Lee, B. et al. Highly flexible and efficient all-polymer solar cells with high-viscosity processing polymer additive toward potential of stretchable devices. Angew. Chem., Int. Ed. 2018, 57, 13277–13282.

DOI
[4]

Liu, T.; Yang, T.; Ma, R. J.; Zhan, L. L.; Luo, Z. H.; Zhang, G. Y.; Li, Y.; Gao, K.; Xiao, Y. Q.; Yu, J. W. et al. 16% efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend. Joule 2021, 5, 914–930.

[5]

Benten, H.; Mori, D.; Ohkita, H.; Ito, S. Recent research progress of polymer donor/polymer acceptor blend solar cells. J. Mater. Chem. A 2016, 4, 5340–5365.

[6]

Zhang, G. Y.; Ning, H. J.; Chen, H.; Jiang, Q. J.; Jiang, J. Q.; Han, P. W.; Dang, L.; Xu, M. C.; Shao, M.; He, F. et al. Naphthalenothiophene imide-based polymer exhibiting over 17% efficiency. Joule 2021, 5, 931–944.

[7]

Sun, C.; Lee, J. W.; Lee, C.; Lee, D.; Cho, S.; Kwon, S. K.; Kim, B. J.; Kim, Y. H. Dimerized small-molecule acceptors enable efficient and stable organic solar cells. Joule 2023, 7, 416–430.

[8]

Li, C.; Zhou, J. D.; Song, J. L.; Xu, J. Q.; Zhang, H. T.; Zhang, X. N.; Guo, J.; Zhu, L.; Wei, D. H.; Han, G. C. et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 2021, 6, 605–613.

[9]

Liu, Q. S.; Jiang, Y. F.; Jin, K.; Qin, J. Q.; Xu, J. G.; Li, W. T.; Xiong, J.; Liu, J. F.; Xiao, Z.; Sun, K. et al. 18% Efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275.

[10]

Yuan, J.; Zhang, Y. Q.; Zhou, L. Y.; Zhang, G. C.; Yip, H. L.; Lau, T. K.; Lu, X. H.; Zhu, C.; Peng, H. J.; Johnson, P. A. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151.

[11]

Wang, J. W.; Cui, Y.; Xu, Y.; Xian, K. H.; Bi, P. Q.; Chen, Z. H.; Zhou, K. K.; Ma, L. J.; Zhang, T.; Yang, Y. et al. A new polymer donor enables binary all-polymer organic photovoltaic cells with 18% efficiency and excellent mechanical robustness. Adv. Mater. 2022, 34, 2205009.

[12]

Shao, Y. M.; Gao, Y.; Sun, R.; Zhang, M. M.; Min, J. A versatile and low-cost polymer donor based on 4-chlorothiazole for highly efficient polymer solar cells. Adv. Mater. 2023, 35, 2208750.

[13]

Wei, Y. N.; Chen, Z. H.; Lu, G. Y.; Yu, N.; Li, C. Q.; Gao, J. H.; Gu, X. B.; Hao, X. T.; Lu, G. H.; Tang, Z. et al. Binary organic solar cells breaking 19% via manipulating the vertical component distribution. Adv. Mater. 2022, 34, 2204718.

[14]

Zhang, T.; An, C. B.; Cui, Y.; Zhang, J. Q.; Bi, P. Q.; Yang, C. Y.; Zhang, S. Q.; Hou, J. H. A universal nonhalogenated polymer donor for high-performance organic photovoltaic cells. Adv. Mater. 2022, 34, 2105803.

[15]

Wang, J. X.; Han, C. Y.; Bi, F. Z.; Huang, D.; Wu, Y. W.; Li, Y. H.; Wen, S. G.; Han, L. L.; Yang, C. M.; Bao, X. C. et al. Overlapping fasten packing enables efficient dual-donor ternary organic solar cells with super stretchability. Energy Environ. Sci. 2021, 14, 5968–5978.

[16]

Yu, H.; Wang, Y.; Kim, H. K.; Wu, X.; Li, Y. H.; Yao, Z. F.; Pan, M. G.; Zou, X. H.; Zhang, J. Q.; Chen, S. S. et al. A vinylene-linker-based polymer acceptor featuring a coplanar and rigid molecular conformation enables high-performance all-polymer solar cells with over 17% efficiency. Adv. Mater. 2022, 34, 2200361.

[17]

Tang, A. L.; Zhan, C. L.; Yao, J. N.; Zhou, E. J. Design of diketopyrrolopyrrole (DPP)-based small molecules for organic-solar-cell applications. Adv. Mater. 2017, 29, 1600013.

[18]

Lai, H. J.; Zhao, Q. Q.; Chen, Z. Y.; Chen, H.; Chao, P. J.; Zhu, Y. L.; Lang, Y. W.; Zhen, N.; Mo, D. Z.; Zhang, Y. Z. et al. Trifluoromethylation enables a 3D interpenetrated low-band-gap acceptor for efficient organic solar cells. Joule 2020, 4, 688–700.

[19]

Jung, H.; Jung, A. R.; Jin, S. M.; Kim, S.; Heo, H.; Van T. Nguyen, H.; Kim, M. J.; Ahn, P.; Kim, M. H.; Lee, Y. et al. Influence of 3D morphology on the performance of all-polymer solar cells processed using environmentally benign nonhalogenated solvents. Nano Energy 2020, 77, 105106.

[20]

Henderson, R. K.; Jiménez-González, C.; Constable, D. J. C.; Alston, S. R.; Inglis, G. G. A.; Fisher, G.; Sherwood, J.; Binks, S. P.; Curzons, A. D. Expanding GSK’s solvent selection guide-embedding sustainability into solvent selection starting at medicinal chemistry. Green Chem. 2011, 13, 854–862.

[21]

Ma, Z. W.; Zhao, B.; Gong, Y. S.; Deng, J. P.; Tan, Z. A. Green-solvent-processable strategies for achieving large-scale manufacture of organic photovoltaics. J. Mater. Chem. A 2019, 7, 22826–22847.

[22]

Huang, Y. P.; Luscombe, C. K. Towards green synthesis and processing of organic solar cells. Chem. Rec. 2019, 19, 1039–1049.

[23]

Zhang, S. Q.; Ye, L.; Zhang, H.; Hou, J. H. Green-solvent-processable organic solar cells. Mater. Today 2016, 19, 533–543.

[24]

Lee, S.; Jeong, D.; Kim, C.; Lee, C.; Kang, H.; Woo, H. Y.; Kim, B. J. Eco-friendly polymer solar cells: Advances in green-solvent processing and material design. ACS Nano 2020, 14, 14493–14527.

[25]

McDowell, C.; Bazan, G. C. Organic solar cells processed from green solvents. Curr. Opin. Green Sustainable Chem. 2017, 5, 49–54.

[26]

Li, H. J.; Liu, S. Q.; Wu, X. T.; Yao, S. Y.; Hu, X. T.; Chen, Y. W. Advances in the device design and printing technology for eco-friendly organic photovoltaics. Energy Environ. Sci. 2023, 16, 76–88.

[27]

Liu, B.; Sun, H. L.; Lee, J. W.; Yang, J.; Wang, J. W.; Li, Y. C.; Li, B. B.; Xu, M.; Liao, Q. G.; Zhang, W. et al. Achieving highly efficient all-polymer solar cells by green-solvent-processing under ambient atmosphere. Energy Environ. Sci. 2021, 14, 4499–4507.

[28]

Xue, J. W.; Zhao, H.; Lin, B. J.; Wang, Y. L.; Zhu, Q. L.; Lu, G. Y.; Wu, B. H.; Bi, Z. Z.; Zhou, X. B.; Zhao, C. et al. Nonhalogenated dual-slot-die processing enables high-efficiency organic solar cells. Adv. Mater. 2022, 34, 2202659.

[29]

Pang, S. T.; Chen, Z. L.; Li, J. Y.; Chen, Y. T.; Liu, Z. T.; Wu, H. B.; Duan, C. H.; Huang, F.; Cao, Y. High-efficiency organic solar cells processed from a real green solvent. Mater. Horiz. 2023, 10, 473–482.

DOI
[30]

Lu, H.; Wang, H.; Ran, G. L.; Li, S.; Zhang, J. Q.; Liu, Y. H.; Zhang, W. K.; Xu, X. J.; Bo, Z. S. Random terpolymer enabling high-efficiency organic solar cells processed by nonhalogenated solvent with a low nonradiative energy loss. Adv. Funct. Mater. 2022, 32, 2203193.

[31]

Chen, H. Y.; Zhang, R.; Chen, X. B.; Zeng, G.; Kobera, L.; Abbrent, S.; Zhang, B.; Chen, W. J.; Xu, G. Y.; Oh, J. et al. A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents. Nat. Energy 2021, 6, 1045–1053.

[32]

Duong, D. T.; Walker, B.; Lin, J.; Kim, C.; Love, J.; Purushothaman, B.; Anthony, J. E.; Nguyen, T. Q. Molecular solubility and hansen solubility parameters for the analysis of phase separation in bulk heterojunctions. J. Polym. Sci. Part B: Polym. Phys. 2012, 50, 1405–1413.

[33]

Lee, C.; Li, Y. X.; Lee, W.; Lee, Y.; Choi, J.; Kim, T.; Wang, C.; Gomez, E. D.; Woo, H. Y.; Kim, B. J. Correlation between phase-separated domain sizes of active layer and photovoltaic performances in all-polymer solar cells. Macromolecules 2016, 49, 5051–5058.

[34]

Lee, T.; Oh, S.; Rasool, S.; Song, C. E.; Kim, D.; Lee, S. K.; Shin, W. S.; Lim, E. Non-halogenated solvent-processed ternary-blend solar cells via alkyl-side-chain engineering of a non-fullerene acceptor and their application in large-area devices. J. Mater. Chem. A 2020, 8, 10318–10330.

[35]

Hong, L.; Yao, H. F.; Wu, Z. A.; Cui, Y.; Zhang, T.; Xu, Y.; Yu, R. N.; Liao, Q.; Gao, B. W.; Xian, K. H. et al. Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency. Adv. Mater. 2019, 31, 1903441.

[36]

Ye, L.; Collins, B. A.; Jiao, X. C.; Zhao, J. B.; Yan, H.; Ade, H. Miscibility-function relations in organic solar cells: Significance of optimal miscibility in relation to percolation. Adv. Energy Mater. 2018, 8, 1703058.

DOI
[37]

Li, Z. Y.; Peng, F.; Ying, L.; Quan, H. L.; Li, J. W.; Wang, X. Z.; Wu, H. B.; Huang, F.; Cao, Y. Fine tuning miscibility of donor/acceptor through solid additives enables all-polymer solar cells with 15.6% efficiency. Sol. RRL 2021, 5, 2100549.

DOI
[38]

Sun, C.; Lee, J. W.; Seo, S.; Lee, S.; Wang, C.; Li, H.; Tan, Z. P.; Kwon, S. K.; Kim, B. J.; Kim, Y. H. Synergistic engineering of side chains and backbone regioregularity of polymer acceptors for high-performance all-polymer solar cells with 15.1% efficiency. Adv. Energy Mater. 2022, 12, 2103239.

[39]

Morales, A. R.; Frazer, A.; Woodward, A. W.; Ahn-White, H. Y.; Fonari, A.; Tongwa, P.; Timofeeva, T.; Belfield, K. D. Design, synthesis, and structural and spectroscopic studies of push-pull two-photon absorbing chromophores with acceptor groups of varying strength. J. Org. Chem. 2013, 78, 1014–1025.

[40]

Park, J. S.; Choi, N.; Lee, C.; Lee, S.; Ha, J. W.; Hwang, D. H.; Kim, B. J. Elucidating roles of polymer donor aggregation in all-polymer and non-fullerene small-molecule-polymer solar cells. Chem. Mater. 2020, 32, 3585–3596.

[41]

Heintges, G. H. L.; Hendriks, K. H.; Colberts, F. J. M.; Li, M. M.; Li, J. Y.; Janssen, R. A. J. The influence of siloxane side-chains on the photovoltaic performance of a conjugated polymer. RSC Adv. 2019, 9, 8740–8747.

[42]

Wang, Q.; Li, M. M.; Peng, Z. X.; Kirby, N.; Deng, Y. F.; Ye, L.; Geng, Y. H. Calculation aided miscibility manipulation enables highly efficient polythiophene: Nonfullerene photovoltaic cells. Sci. China Chem. 2021, 64, 478–487.

[43]

You, H.; Kim, D.; Cho, H. H.; Lee, C.; Chong, S.; Ahn, N. Y.; Seo, M.; Kim, J.; Kim, F. S.; Kim, B. J. Shift of the branching point of the side-chain in naphthalenediimide (NDI)-based polymer for enhanced electron mobility and all-polymer solar cell performance. Adv. Funct. Mater. 2018, 28, 1803613.

[44]

Meng, B.; Song, H. Y.; Chen, X. X.; Xie, Z. Y.; Liu, J.; Wang, L. X. Replacing alkyl with oligo(ethylene glycol) as side chains of conjugated polymers for close π-π stacking. Macromolecules 2015, 48, 4357–4363.

[45]

Chen, Z.; Yan, L.; Rech, J. J.; Hu, J.; Zhang, Q. Q.; You, W. Green-solvent-processed conjugated polymers for organic solar cells: The impact of oligoethylene glycol side chains. ACS Appl. Polym. Mater. 2019, 1, 804–814.

[46]

Nielsen, C. B.; Giovannitti, A.; Sbircea, D. T.; Bandiello, E.; Niazi, M. R.; Hanifi, D. A.; Sessolo, M.; Amassian, A.; Malliaras, G. G.; Rivnay, J. et al. Molecular design of semiconducting polymers for high-performance organic electrochemical transistors. J. Am. Chem. Soc. 2016, 138, 10252–10259.

[47]

Jeong, D.; Jo, I. Y.; Lee, S.; Kim, J. H.; Kim, Y.; Kim, D.; Reynolds, J. R.; Yoon, M. H.; Kim, B. J. High-performance n-type organic electrochemical transistors enabled by aqueous solution processing of amphiphilicity-driven polymer assembly. Adv. Funct. Mater. 2022, 32, 2111950.

DOI
[48]

Chen, X. X.; Zhang, Z. J.; Liu, J.; Wang, L. X. A polymer electron donor based on isoindigo units bearing branched oligo(ethylene glycol) side chains for polymer solar cells. Polym. Chem. 2017, 8, 5496–5503.

[49]

Zhang, S. Q.; Qin, Y. P.; Zhu, J.; Hou, J. H. Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv. Mater. 2018, 30, 1800868.

[50]

Lee, W.; Lee, C.; Yu, H.; Kim, D. J.; Wang, C.; Woo, H. Y.; Oh, J. H.; Kim, B. J. Side chain optimization of naphthalenediimide-bithiophene-based polymers to enhance the electron mobility and the performance in all-polymer solar cells. Adv. Funct. Mater. 2016, 26, 1543–1553.

[51]

Lee, C.; Kang, H.; Lee, W.; Kim, T.; Kim, K. H.; Woo, H. Y.; Wang, C.; Kim, B. J. High-performance all-polymer solar cells via side-chain engineering of the polymer acceptor: The importance of the polymer packing structure and the nanoscale blend morphology. Adv. Mater. 2015, 27, 2466–2471.

[52]

Lee, S.; Kim, Y.; Wu, Z.; Lee, C.; Oh, S. J.; Luan, N. T.; Lee, J.; Jeong, D.; Zhang, K.; Huang, F. et al. Aqueous-soluble naphthalene diimide-based polymer acceptors for efficient and air-stable all-polymer solar cells. ACS Appl. Mater. Interfaces 2019, 11, 45038–45047.

[53]

Zhu, D. Q.; Bao, X. C.; Zhu, Q. Q.; Gu, C. T.; Qiu, M.; Wen, S. G.; Wang, J. Y.; Shahid, B.; Yang, R. Q. Thienothiophene-based copolymers for high-performance solar cells, employing different orientations of the thiazole group as a π bridge. Energy Environ. Sci. 2017, 10, 614–620.

[54]

Rivnay, J.; Mannsfeld, S. C. B.; Miller, C. E.; Salleo, A.; Toney, M. F. Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chem. Rev. 2012, 112, 5488–5519.

[55]

Seo, S.; Kim, J.; Kang, H.; Lee, J. W.; Lee, S.; Kim, G. U.; Kim, B. J. Polymer donors with temperature-insensitive, strong aggregation properties enabling additive-free, processing temperature-tolerant high-performance all-polymer solar cells. Macromolecules 2021, 54, 53–63.

[56]

Seo, S.; Sun, C.; Lee, J. W.; Lee, S.; Lee, D.; Wang, C.; Phan, T. N. L.; Kim, G. U.; Cho, S.; Kim, Y. H. et al. Importance of high-electron mobility in polymer acceptors for efficient all-polymer solar cells: Combined engineering of backbone building unit and regioregularity. Adv. Funct. Mater. 2022, 32, 2108508.

[57]

Kim, K. H.; Kang, H.; Kim, H. J.; Kim, P. S.; Yoon, S. C.; Kim, B. J. Effects of solubilizing group modification in fullerene bis-adducts on normal and inverted type polymer solar cells. Chem. Mater. 2012, 24, 2373–2381.

[58]

Kim, G. U.; Sun, C.; Park, J. S.; Lee, H. G.; Lee, D.; Lee, J. W.; Kim, H. J.; Cho, S.; Kim, Y. H.; Kwon, S. K. et al. Importance of terminal group pairing of polymer donor and small-molecule acceptor in optimizing blend morphology and voltage loss of high-performance solar cells. Adv. Funct. Mater. 2021, 31, 2100870.

[59]

Lee, J. W.; Lim, C.; Lee, S. W.; Jeon, Y.; Lee, S.; Kim, T. S.; Lee, J. Y.; Kim, B. J. Intrinsically stretchable and non-halogenated solvent processed polymer solar cells enabled by hydrophilic spacer-incorporated polymers. Adv. Energy Mater. 2022, 12, 2202224.

[60]

Lee, J. W.; Sun, C.; Kim, D. J.; Ha, M. Y.; Han, D.; Park, J. S.; Wang, C.; Lee, W. B.; Kwon, S. K.; Kim, T. S. et al. Donor-acceptor alternating copolymer compatibilizers for thermally stable, mechanically robust, and high-performance organic solar cells. ACS Nano 2021, 15, 19970–19980.

[61]

Blom, P. W. M.; Mihailetchi, V. D.; Koster, L. J. A.; Markov, D. E. Device physics of polymer: Fullerene bulk heterojunction solar cells. Adv. Mater. 2007, 19, 1551–1566.

[62]

Cowan, S. R.; Roy, A.; Heeger, A. J. Recombination in polymer-fullerene bulk heterojunction solar cells. Phys. Rev. B 2010, 82, 245207.

[63]

Wang, W.; Wu, Q.; Sun, R.; Guo, J.; Wu, Y.; Shi, M. M.; Yang, W. Y.; Li, H. N.; Min, J. Controlling molecular mass of low-band-gap polymer acceptors for high-performance all-polymer solar cells. Joule 2020, 4, 1070–1086.

[64]

Li, Z. Y.; Ying, L.; Zhu, P.; Zhong, W. K.; Li, N.; Liu, F.; Huang, F.; Cao, Y. A generic green solvent concept boosting the power conversion efficiency of all-polymer solar cells to 11%. Energy Environ. Sci. 2019, 12, 157–163.

DOI
[65]

Seo, S.; Lee, J. W.; Kim, D. J.; Lee, D.; Phan, T. N. L.; Park, J.; Tan, Z. P.; Cho, S.; Kim, T. S.; Kim, B. J. Poly(dimethylsiloxane)-block-PM6 polymer donors for high-performance and mechanically robust polymer solar cells. Adv. Mater. 2023, 35, 2300230.

DOI
[66]

van Franeker, J. J.; Turbiez, M.; Li, W. W.; Wienk, M. M.; Janssen, R. A. J. A real-time study of the benefits of co-solvents in polymer solar cell processing. Nat. Commun. 2015, 6, 6229.

[67]

Park, J. S.; Sun, C.; Han, Y.; Kim, G. U.; Phan, T. N. L.; Kim, Y. H.; Kim, B. J. 2D outer side chain-incorporated Y acceptors for highly efficient organic solar cells with nonhalogenated solvent and annealing-free process. Adv. Energy Sustainability Res. 2022, 3, 2200070.

[68]

Wang, Y. W.; Lee, J.; Hou, X. Y.; Labanti, C.; Yan, J.; Mazzolini, E.; Parhar, A.; Nelson, J.; Kim, J. S.; Li, Z. Recent progress and challenges toward highly stable nonfullerene acceptor-based organic solar cells. Adv. Energy Mater. 2021, 11, 2003002.

[69]

Hung, K. E.; Lin, Y. S.; Xue, Y. J.; Yang, H. R.; Lai, Y. Y.; Chang, J. W.; Su, C. J.; Su, A. C.; Hsu, C. S.; Jeng, U. S. et al. Non-volatile perfluorophenyl-based additive for enhanced efficiency and thermal stability of nonfullerene organic solar cells via supramolecular fluorinated interactions. Adv. Energy Mater. 2022, 12, 2103702.

[70]

Cha, H.; Wu, J. Y.; Wadsworth, A.; Nagitta, J.; Limbu, S.; Pont, S.; Li, Z.; Searle, J.; Wyatt, M. F.; Baran, D. et al. An efficient, “burn in” free organic solar cell employing a nonfullerene electron acceptor. Adv. Mater. 2017, 29, 1701156.

[71]

Kim, G. U.; Park, J. H.; Lee, S.; Lee, D.; Lee, J. W.; Jeong, D.; Phan, T. N. L.; Kim, F. S.; Cho, S.; Kwon, S. K. et al. Revisiting carbazole-based polymer donors for efficient and thermally stable polymer solar cells: Structural utility of coplanar π-bridged spacers. J. Mater. Chem. A 2022, 10, 9408–9418.

[72]

Lee, J. W.; Seo, S.; Lee, S. W.; Kim, G. U.; Han, S.; Phan, T. N. L.; Lee, S.; Li, S.; Kim, T. S.; Lee, J. Y. et al. Intrinsically stretchable, highly efficient organic solar cells enabled by polymer donors featuring hydrogen-bonding spacers. Adv. Mater. 2022, 34, 2207544.

[73]

Ghasemi, M.; Balar, N.; Peng, Z. X.; Hu, H. W.; Qin, Y. P.; Kim, T.; Rech, J. J.; Bidwell, M.; Mask, W.; McCulloch, I. et al. A molecular interaction-diffusion framework for predicting organic solar cell stability. Nat. Mater. 2021, 20, 525–532.

[74]

Du, X. Y.; Heumueller, T.; Gruber, W.; Almora, O.; Classen, A.; Qu, J. F.; He, F.; Unruh, T.; Li, N.; Brabec, C. J. Unraveling the microstructure-related device stability for polymer solar cells based on nonfullerene small-molecular acceptors. Adv. Mater. 2020, 32, 1908305.

[75]

Lee, J.; Kim, J. W.; Park, S. A.; Son, S. Y.; Choi, K.; Lee, W.; Kim, M.; Kim, J. Y.; Park, T. Study of burn-in loss in green solvent-processed ternary blended organic photovoltaics derived from UV-crosslinkable semiconducting polymers and nonfullerene acceptors. Adv. Energy Mater. 2019, 9, 1901829.

File
0088_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 06 June 2023
Revised: 29 June 2023
Accepted: 05 July 2023
Published: 24 July 2023
Issue date: March 2024

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was also supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant (20214000000650) and National Research Foundation (NRF) grant (2022R1A2B5B03001761) funded by the Korea government.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return