Abstract

The purpose of this study is to find out the efficiency of high intensity interval training on antioxidants of male physical education students. To achieve the purpose thirty (30) male physical education students were selected from Swami Vivekanand Subharti University, Department of Physical Education, Meerut, Utter Pradesh. These subjects were tested on antioxidants before and after eight weeks of high intensity interval training (HIIT). The mean maximal aerobic speed 4.21 m/s was used as a criterion velocity to set running paces for highintensity interval training. Statistical technique used in the present study was 2×2 ANOVA with repeated measures on last two factors. The result of the study revealed that eight weeks of high intensity interval training resulted in 32.65% of increase in Superoxide dismutase (SOD) (F(1,28) =4.663, p < 0.05) and 8.86% on Glutathione peroxidase (GPx) (F(1,28) = 14.88, p < 0.05). However, 4.92% of reduction is noticed in Catalase (CAT) (F(1,28) = 14.88, p < 0.05). It is concluded that high intensity interval training for eight weeks resulted in significant alterations in antioxidants and which indirectly lowered the lipid peroxidation of male physical education students.

Keywords

SOD, GPx, CAT, Maximal aerobic speed, ANCOVA, Physical education Students,

References

  1. T. O. Bompa, G. G. Haff (1999) Periodization: Theory and Methodology of training, 4th ed, Champaign IL: Human Kinetics.
  2. J. Finaud, G. Lac, E. Filaire, Oxidative stress: Relationship with exercise and training, Sports Medicine, 36 (2006) 327-358.
  3. P. Kakkar, B. Das, P. N. Viswanathan, A modified spectrophotometeric assay of superoxide dismutase, Indian Journal of Biochemistry and Biophysics, 21 (1984) 130- 132.aérobie chez les élèves des collèges et lycées, Science et Motricité, 13(1991) 19– 26.
  4. J. T. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman, W. G. Hoekstra, Selenium: Biochemical role as a component of glutathione peroxidase, Science, 179 (1973) 588-590.
  5. A. K. Sinha, Colorimetric assay of catalase, Analytical Biochemistry, 47 (1972) 389- 394.
  6. M. Gerbeaux, G. Lensel-Corbeil, G. Branly, Estimation de la vitesse maximale aérobie chez les élèves des collèges et lycées, Science et Motricité, 13 (1991) 19– 26.
  7. J. Edge, D. Bishop, C. Goodman, The effects of training intensity on muscle buffer capacity in females, European Journal of Applied Physiology, 96 (2006) 97-105.
  8. P. B. Laursen, C. M. Shing, J. M. Peake, J. S. Coombes, D. G. Jenkins, Influence of highintensity interval training on adaptations in well-trained cyclists, The Journal of Strength & Conditioning Research, 19 (2005) 527-533.
  9. J. Helgerud, K. Hoydal, E. Wang, T. Karlsen, P. Berg, M. Bjerkaas, T. Simonsen, C. Helgesen, N. Hjorth, R. Bach, J. Hoff, Aerobic highintensity intervals improve VO2max more than moderate training, Medicine and Science in Sports and Exercise, 39 (2007) 665-671.
  10. R. R. Jenkins, Free radical chemistry relationship to exercise, Sports Medicine, 5 (1988) 156-170.
  11. L. L. Ji (1995) Exercise and oxidative stress: Role of the cellular antioxidant systems. In: Holloszy JO, Ed. Exercise Sports Reviews. Baltimore, MD: Williams & Wilkins.
  12. C. K. Sen, Oxidants and antioxidants in exercise, Journal of Applied Physiology, 79 (1995) 675-686.
  13. M. Higuchi, L. J. Cartier, M. Chen, J. O. Holloszy, Superoxide dismutase and catalase in skeletal muscle: adaptive response toexercise, Journal of Gerontology, 40 (1985) 281-286.
  14. C. Leeuwenburgh, R. Fiebig, R. Chandwaney, L. L. Ji, Aging and exercise training in skeletal muscle: responses of glutathione and antioxidant enzyme systems, American Journal of Physiology, 267 (1994) 439-445.
  15. C. Leeuwenburgh, J. Hollander, S. Leichtweis, M. Griffiths, M. Gore, L. L. Ji, Adaptations of glutathione antioxidant system to endurance training are tissue and muscle fiber specific, American Journal of Physiology, 272 (1997) 363-369.
  16. S. Oh-ishi, T. Kizaki, J. Nagasawa, T. Izawa, T. Komabayashi, N. Nagata, K. Suzuki, N. Taniguchi, H. Ohno, Effects of endurance training on superoxide dismutase activity, content and mRNA expression in rat muscle, Clinical and Experimental Pharmacology and Physiology, 24 (1997) 326-332.
  17. S. K. Powers, D. Criswell, J. Lawler, L. L. Ji, D. Martin, R. A. Herb, G. Dudley, Influence of exercise and fiber type on antioxidant enzyme activity in rat skeletal muscle, American Journal of Physiology, 266 (1994) 375-380.
  18. S. Oh-ishi, T. Kizaki, T. Ookawara, T. Sakurai, T. Izawa, N. Nagata, H. Ohno, Endurance training improves the resistance of rat diaphragm to exercise- induced oxidative stress, American Journal of Respiratory and Critical Care Medicine, 156 (1997) 1579-1585.
  19. C. Leeuwenburgh, P. A. Hansen, J. O. Holloszy, J. W. Heinecke, Hydroxyl radical generation during exercise increases mitochondrial protein oxidation and levels of urinary dityrosine, Free Radical Biology and Medicine, 27 (1999) 186-192.
  20. H. Miyazaki, S. Oh-ishi, T. Ookawara, T. Kizaki, K. Toshinai, S. Ha, S.Haga, L. L. Ji, H. Ohno, Strenuous endurance training in humans reduces oxidative stress following exhausting exercise, European Journal of Applied Physiology, 84 (2001) 1-6.