Vol. 30
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-03-17
Electromagnetic Wave Propagation in Soil for Wireless Underground Sensor Networks
By
Progress In Electromagnetics Research M, Vol. 30, 11-23, 2013
Abstract
Wireless underground sensor networks (WUSN) consist of wireless devices that operate below the ground surface. These devices are buried completely under dense soil, thus electromagnetic wave transmits only through soil medium. However, the high attenuation that caused by soil is the main challenge for the electromagnetic wave transmission for WUSN. In this study, architecture of wireless underground sensor network communication was established. The experimental measurements were conducted using WUSN sensor nodes at three different carrier frequencies, respectively. Received signal strength and packet error rate were examined for communication links between the sensor nodes. The test results showed that carrier frequency was one of the main factors that affected electromagnetic wave propagation in the soil medium. It was concluded that the burial depth of the sensor nodes, horizontal inter-node distance, and soil volumetric water content have significant impacts on the signal strength and packet error rate during the electromagnetic wave propagation within a WUSN.
Citation
Xiaoqing Yu, Pute Wu, Zenglin Zhang, Ning Wang, and Wenting Han, "Electromagnetic Wave Propagation in Soil for Wireless Underground Sensor Networks," Progress In Electromagnetics Research M, Vol. 30, 11-23, 2013.
doi:10.2528/PIERM12110609
References

1. Bogena, H. R., J. A. Huismana, H. Meierb, U. Rosenbauma, and A. Weuthena, "Hybrid wireless underground sensor networks: Quantification of signal attenuation in soil," Vadose Zone Journal, Vol. 8, No. 3, 755-761, August 2009.
doi:10.2136/vzj2008.0138

2. Erich, P., D, Stuntebeck, and T. M. Pompili, "Wireless underground sensor networks using commodity terrestrial motes," IEEE Xplore. Restrictions Apply., 112-114, 2006.

3. Lopez, J. A., F. Soto, J. Suardiaz, et al. "Wireless sensor networks for precision horticulture in Southern Spain," Computers and Electronics in Agriculture, Vol. 68, No. 3, 25-35, 2009.
doi:10.1016/j.compag.2009.04.006

4. Li, L., H. X. Li, and H. Liu, "Greenhouse environment monitoring system based on wireless sensor network," Transactions of the Chinese Society for Agricultural Machinery, Vol. 9, No. 40, 228-231, 2009.

5. Cai, Y. H., G. Liu, L. Li, et al. "Design and test of nodes for farmland data acquisition based on wireless sensor network," Chinese Society of Agricultural Engineering, Vol. 25, No. 4, 176-178, 2009.

6. Zhang, R. B., G. D. Gu, Y. B. Feng, et al. "Realization of communication in wireless monitoring system in greenhouse based on IEEE802.15.4," Transactions of the Chinese Society for Agricultural Machinery, Vol. 39, No. 8, 119-122, 2008.

7. Zakaria, A. and Y. Yang, "Signal propagation in aquaculture environment for wireless sensor network applications," Progress In Electromagnetics Research, Vol. 131, 477-494, 2012.

8. Berman, E., G. Calinescu, C. Shah, and A. Zelikovsky, "Power efficient monitoring management in sensor networks," Proceedings of IEEE Wireless Communication and Networking Conference, Ailanta, USA, 2004.

9. Akyildiz, I. F. and E. P. Stuntebeck, "Wireless underground sensor networks: Research challenges," Ad Hoc Networks, Vol. 4, No. 6, 669-686, 2006.
doi:10.1016/j.adhoc.2006.04.003

10. Li, L., C. Mehmet, and I. F. Akyildizy, "Characteristics of underground channel for wireless underground sensor networks," The Sixth Annual Mediterranean Ad Hoc Networking Workshop, June 12-15, 2007.

11. Akyildiz, I. F., W. Su, Y. Sankarasubramaniam, and E. Cayirci, "Wireless sensor networks: A survey," Computer Networks, Vol. 38, No. 4, 393-422, 2002.
doi:10.1016/S1389-1286(01)00302-4

12. Vuran, M. C. and I. F. Akyildiz, "Channel model and analysis for wireless underground sensor networks in soil medium," Physical Communication, Vol. 3, No. 4, 245-254, 2010.
doi:10.1016/j.phycom.2010.07.001

13. Sun, Z. and I. F. Akyildiz, "Channel modeling of wireless networks in tunnels in proc," IEEE Globecom, New Orleans, USA, November 2008.

14. Harun, A., D. L. Ndzi, M. F. Ramli, A. Y. M. Shakaff, M. N. Ahmad, L. M. Kamarudin, D. L. Ndzi, L. M. Kamarudin, A. A. Muhammad Ezanuddin, A. Zakaria, R. B. Ahmad, M. F. B. A. Malek, A. Y. M. Shakaff, and M. N. Jafaar, "Vegetation attenuation measurements and modeling in plantations for wireless sensor network planning," Progress In Electromagnetics Research B, Vol. 36, 283-301, 2012.

15. Li, L. and X. M. Wen, "Energy efficient optimization of clustering algorithm in wireless sensor network," Journal of Electronics & Information Technology, Vol. 30, No. 4, 966-969, 2008.
doi:10.3724/SP.J.1146.2006.01552

16. Coen, J. R., K. Henk, K. Leon, et al. "A new wireless underground network system for continuous monitoring of soil water contents," Water Resources Research, Vol. 45, No. 36, 36-44, 2009.

17. Silva, A. R. and M. C. Vuran, "Communication with above devices in wireless underground sensor networks: A empirical study," Proceedings of IEEE International Conference on Communications, 23-27, 2010.

18. Sheth, A., K. Tejaswi, P. Mehta, et al. "Senslide: A sensor network based landslide prediction system," Proceedings of Sensys --- The 3rd International Conference on Embedded Networked Sensor Systems, 280-281, 2005.
doi:10.1145/1098918.1098954

19. Martinez, K., R. Ong, and J. Hart, "Glacsweb: A sensor network for hostile environments," IEEESECON, Vol. 1, 81-87, 2004.

20. Allen, G. W., K. Lorincz, M.Welsh, O. Marcillo, et al. "Deploying a wireless sensor network on an active volcano," IEEE Internet Computing, Vol. 10, No. 2, 18-25, 2006.
doi:10.1109/MIC.2006.26

21. Li, Y. H. and J. X. Qi, "Design of detecting system for powder particle size," Instrument Technique and Sensor, Vol. 8, 98-100, 2011.