Vol. 132
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-05-06
A High Gain, Wide Bandwidth and Low Cross-Polarization Compact Horn Antenna Fed by a Cavity-Backed Stacked Microstrip Antenna
By
Progress In Electromagnetics Research C, Vol. 132, 231-240, 2023
Abstract
A conical horn antenna fed by a cavity-backed two-layered suspended microstrip antenna has been proposed. The overall compact antenna with a length of 2.3λ0 yields a wide impedance bandwidth of 57% centred around 2.8 GHz with a very high gain of 19.9 dBi, an average gain of 17.5 dBi and a radiation efficiency of above 88%. In effect, the gain of the basic two-layered suspended microstrip antenna is enhanced by 8.4 dB when it is backed by the cavity and the conical horn. A good radiation characteristic is obtained throughout the impedance bandwidth with main beam stability, high isolation between two such antennas and low cross-polarization. Over the entire operating bandwidth cross-polarization lower than -30 dB with co-cross polarization isolation better than 50 dB is obtained in 45˚ plane. In comparison to conventional conical horn antennas yielding the same gain, the proposed antenna is more efficient with only 45% length. The prime contribution of the work is the concurrent yield of high 19.9 dBi gain, wide bandwidth, high efficiency and good radiation characteristics including unidirectional stable radiation patterns, low cross pol. and high isolation between antennas which has not been reported so far. The proposed antenna is designed for various S-band FMCW Radars.
Citation
Krishnendu Raha, and Kamla Prasan Ray, "A High Gain, Wide Bandwidth and Low Cross-Polarization Compact Horn Antenna Fed by a Cavity-Backed Stacked Microstrip Antenna," Progress In Electromagnetics Research C, Vol. 132, 231-240, 2023.
doi:10.2528/PIERC23012303
References

1. King, A. P., "The radiation characteristics of conical horn antennas," Proc. IRE, Vol. 38, No. 3, 249-251, 1950.
doi:10.1109/JRPROC.1950.230734

2. Balanis, C. A., Antenna Theory: Analysis and Design, 739, John Wiley and Sons, USA, 2005.

3. Oliver, A. D., P. J. B. Clarricoats, A. A. Kishk, and L. Shafai, Microwave Horns and Feeds, ser. Electromagnetic Wave, Vol. 39, Inst. Elect. Eng., London, UK, 1994.
doi:10.1049/PBEW039E

4. Matin, M. A., B. S. Sharif, and C. C. Tsimenidis, "Broadband stacked microstrip antennas with different radiating patch," Wirel. Pers. Commun., Vol. 56, 637-648, 2011, doi: 10.1007/s11277-009-9836-7.
doi:10.1007/s11277-009-9836-7

5. Kumar, G. and K. P. Ray, Broadband Microstrip Antenna, 106-188, Artech House, USA, 2003.

6. Raha, K. and K. P. Ray, "Development of multi cavity-backed stacked multi-resonator microstrip antenna," IETE J. Res., Taylor and Francis, Jul. 26, 2022, doi: 10.1080/03772063.2022.2098835.

7. Kumar, G., K. P. Ray, and A. A. Deshmukh, "Microstrip antenna integrated with horn antenna," Int. J. Microw. Opt. Technol., Vol. 1, No. 1, 2006.

8. Shireen, R., T. Hwang, S. Shi, and D. W. Prather, "Stacked patch excited horn antenna at 94 GHz," Microw. Opt. Technol. Lett., Vol. 50, 2071-2074, 2008, doi: 10.1002/mop.23562.
doi:10.1002/mop.23562

9. Elboushi, A. and A. Sebak, "High-gain hybrid microstrip/conical horn antenna for MMW applications," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 129-132, 2012, doi: 10.1109/LAWP.2012.2184256.
doi:10.1109/LAWP.2012.2184256

10. Sethi, W. T., H. Vettikalladi, B. K. Minhas, and M. A. Alkanhal, "High gain and wide-band aperture-coupled microstrip patch antenna with mounted horn integrated on FR4 for 60 GHz communication systems," IEEE Symp. Wirel. Technol. Appl. (ISWTA), 359-362, 2013, doi: 10.1109/ISWTA.2013.6688804.

11. Nuangpirom, P., E. Pruksawan, and S. Akatimagool, "The development of high gain waveguide antennas for Wi-Fi communication system," Int. Elect. Eng. Congress (iEECON), 1-4, Thailand, 2017, doi: 10.1109/IEECON.2017.8075834.

12. Fadzil, M., A. Othman, and Z. A. Ahmad, "Hybrid dielectric resonator integrated pyramidal horn antenna," Microw. Opt. Technol. Lett., Vol. 55, No. 6, 1299-1303, 2013.
doi:10.1002/mop.27586

13. Gupta, R. D. and M. S. Parihar, "Differentially fed wideband rectangular DRA with high gain using short horn," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 1804-1807, 2017, doi: 10.1109/LAWP.2017.2679228.

14. Jang, T. H., H. Y. Kim, and C. S. Park, "A 60 GHz wideband switched-beam dipole-array-fed hybrid horn antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 7, 1344-1348, Jul. 2018, doi: 10.1109/LAWP.2018.2845877.
doi:10.1109/LAWP.2018.2845877

15. Lim, T. H., J. Park, and H. Choo, "Design of a vivaldi-fed hybrid horn antenna for low-frequency gain enhancement," IEEE Trans. Antennas and Propag., Vol. 66, No. 1, 438-443, Jan. 2018, doi: 10.1109/TAP.2017.2776608.
doi:10.1109/TAP.2017.2776608

16. Pan, Y., Y. Cheng, and Y. Dong, "Dual-polarized directive ultrawideband antenna integrated with horn and vivaldi array," IEEE Antennas Wirel. Propag. Lett., Vol. 20, No. 1, 48-52, Jan. 2021, doi: 10.1109/LAWP.2020.3039377.
doi:10.1109/LAWP.2020.3039377

17. Ali, M. M. M., O. M. Haraz, and T. A. Denidni, "Millimeter-wave PRGW ME dipole antenna with surface mounted conical horn for 5G/6G applications," IEEE Int. Symp. Antennas and Propag. and USNC-URSI Radio Science Meeting (APS/URSI), 157-158, 2021, doi: 10.1109/APS/URSI47566.2021.9703972.
doi:10.1109/APS/URSI47566.2021.9703972

18. Raha, K. and K. P. Ray, "Broadband high gain and low cross-polarization double cavity-backed stacked microstrip antenna," IEEE Trans. Antennas and Propag., Vol. 70, No. 7, Jan. 2022, doi: 10.1109/TAP.2022.3140349.
doi:10.1109/TAP.2022.3140349

19. Kraus, J. D., R. J Marhefka, and A. S. Khan, Antennas for All Applications, 3rd Ed., 329, Tata McGraw Hill, New York, 2006.

20. Karami-Raviz, A. and S. E. Hosseini, "A novel horn antenna with a bed of nails with high gain and low side lobes," 28th Iranian Conf. on Electrical Eng. (ICEE), 1-4, 2020, doi: 10.1109/ICEE50131.2020.9260938.

21. Liu, H., F. Zhang, and J. Xu, "A KA-band high gain and broadband circularly polarized horn antenna," Int. Conf. Microw. and Millimeter Wave Technol. (ICMMT), 1-3, 2020, doi: 10.1109/ICMMT49418.2020.9386816.

22. Lin, W., Z. Y. Zhang, and G. Fu, "Design of a high gain and low cross-polarization tri-band horn antenna," Int. Conf. on Microw. and Millimeter Wave Technol. (ICMMT), 1-3, 2018, doi: 10.1109/ICMMT.2018.8563910.

23. Wu, Z., Y. Bo, and S. Wu, "A spline-profile smooth-walled horn with low cross-polarization and low sidelobe," 5th Int. Conf. on Smart Grid and Electrical Automation (ICSGEA), 551-553, 2020, doi: 10.1109/ICSGEA51094.2020.00125.

24. Sozio, V., et al. "Design and realization of a low cross-polarization conical horn with thin metasurface walls," IEEE Trans. Antennas and Propag., Vol. 68, No. 5, 3477-3486, May 2020, doi: 10.1109/TAP.2020.2975253.
doi:10.1109/TAP.2020.2975253

25. Chen, Y. C., et al. "A dual-polarized improved gaussian profiled corrugated horn antenna with low cross-polarization," Int. Conf. Microw. and Millimeter Wave Technol. (ICMMT), 1-3, 2021, doi: 10.1109/ICMMT52847.2021.9618208.

26. Zhang, R., G. Lu, Q. Guo, D. Zeng, Z. Cao, and C. Chen, "Optimization of corrugated profiled horn with low cross-polarization," IEEE 5th Int. Symp. on Electromagnetic Compatibility, 1-3, Beijing, 2017, doi: 10.1109/EMC-B.2017.8260436.

27. Zhang, R. and G. Lu, "Design of corrugated horn with low cross-polarization and wide band for satellite applications," 26th IEEE Asia-Pacific Conf. on Comn. (APCC), 179-184, 2021, doi: 10.1109/APCC49754.2021.9609873.

28. Raha, K. and K. P. Ray, "Low cost simple compact and portable ground penetrating radar prototype for detecting improvised explosion devices," Intelligent Electronics and Circuits - Terahertz, IRS, and Beyond, Dr. Mingbo Niu, Ed., Intechopen, London, May 24, 2022, doi: 10.5772/intechopen.104744.