Araştırma Makalesi
BibTex RIS Kaynak Göster

A General Evaluation on Estimates of Cobb-Douglas, CES, VES and Translog Production Functions

Yıl 2017, Cilt: 2 Sayı: 3, 235 - 278, 30.09.2017
https://doi.org/10.25229/beta.336297

Öz

This article gives an overview of the literature on
the empirical estimation of different production functions. In this context,
the empirical literature on four different production functions (Cobb-Douglas,
CES, VES and Translog) has been examined. It can be seen from the literature,
OLS estimator is often used to estimate production functions. On the other
hand, the Cobb-Douglas Production Function is generally preferred in the
literature for estimating output elasticity. However, the Cobb-Douglas
Production Function does not provide information about the substitution
relationships between inputs. For this reason, production functions that allow
the calculation of elasticity of substitution should be preferred.  




Kaynakça

  • Açıkgöz, Ş., & Çatalbaş, G. K. (2013). Türkiye Ekonomisi’nde büyümenin kaynakları: Parametrik olmayan bir yaklaşım. Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 25(2), 1-22.
  • Akan, Y. (2002). Türk imalat sanayiinde faktör ikamesi, teknolojik gelişme ve ölçeğe göre getiri: Yeni CES üretim fonksiyonu yaklaşımı. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 16(3-4), 75-85.
  • Arrow, K. J., Chenery, H. B., Minhas, B. S., & Solow, R. M. (1961). Capital-labor substitution and economic efficiency. The Review of Economics and Statistics, 43(3), 225-250.
  • Avcı, T., & Çağlar, A. (2016). Stokastik sınır analizi: İstanbul Sanayi Odası'na kayıtlı firmalara yönelik bir uygulama. Siyaset, Ekonomi ve Yönetim Arastirmalari Dergisi, 4(2), 17-57.
  • Balistreri, E. J., McDaniel, C. A., & Wong, E. V. (2003). An estimation of US industry-level capital–labor substitution elasticities: Support for Cobb–Douglas. The North American Journal of Economics and Finance, 14(3), 343-356.
  • Batisani, N., & Yarnal, B. (2011). Elasticity of capital-land substitution in housing construction, Gaborone, Botswana: Implications for smart growth policy and affordable housing. Landscape and Urban Planning, 99(2), 77-82.
  • Bell, F. W. (1965). A note on the empirical estimation of the CES Production Function with the use of capital data. The Review of Economics and Statistics, 47(3), 328-330.
  • Berndt, E. R. (1976). Reconciling alternative estimates of the elasticity of substitution. The Review of Economics and Statistics, 58(1), 59-68.
  • Berndt, E. R., & Christensen, L. R. (1974). Testing for the existence of a consistent aggregate index of labor inputs. The American Economic Review, 64(3), 391-404.
  • Binswanger, H. P. (1974). The measurement of technical change biases with many factors of production. The American Economic Review, 64(6), 964-976.
  • Blundell, R., & Bond, S. (2000). GMM estimation with persistent panel data: An application to production functions. Econometric Reviews, 19(3), 321-340.
  • Brockway, P. E., Saunders, H., Heun, M. K., Foxon, T. J., Steinberger, J. K., Barrett, J. R., & Sorrell, S. (2017). Energy rebound as a potential threat to a low-carbon future: Findings from a new exergy-based national-level rebound approach. Energies, 10(1), 1-24.
  • Bronfenbrenner, M., & Douglas, P. H. (1939). Cross-section studies in the Cobb-Douglas Function. Journal of Political Economy, 47(6), 761-785.
  • Cantos, P., Gumbau‐Albert, M., & Maudos, J. (2005). Transport infrastructures, spillover effects and regional growth: evidence of the Spanish case. Transport Reviews, 25(1), 25-50.
  • Carter, H. O., & Hartley, H. O. (1958). A variance formula for marginal productivity estimates using the Cobb-Douglas Function. Econometrica, 26(2), 306-313.
  • Carter, M. R. (1984). Identification of the inverse relationship between farm size and productivity: An empirical analysis of peasant agricultural production. Oxford Economic Papers, 36(1), 131-145.
  • Chisasa, J., & Makina, D. (2013). Bank credit and agricultural output in South Africa: A Cobb-Douglas empirical analysis. The International Business & Economics Research Journal, 12(4), 387.
  • Chikabwi, D., Chidoko, C., & Mudzingiri, C. (2017). Manufacturing sector productivity growth drivers: Evidence from SADC member states. African Journal of Science, Technology, Innovation and Development, 9(2), 163-171.
  • Chmielarz, W., & Stachurski, A. (1986). A class of VES Production Function: Properties and estimation results. Control and Cybernetics, (3-4), 367-381.
  • Chow, G. C., & Li, K. W. (2002). China’s economic growth: 1952–2010. Economic Development and Cultural Change, 51(1), 247-256.
  • Christensen, L. R., Jorgenson, D. W., & Lau, L. J. (1973). Transcendental logarithmic production frontiers. The Review of Economics and Statistics, 55(1), 28-45.
  • Cobb, C. W., & Douglas, P. H. (1928). A theory of production. The American Economic Review, 18(1), 139-165.
  • Çalmaşur, G. (2016). Technical efficiency analysis in the automotive industry: A stochastic frontier approach. International Journal of Economics, Commerce and Management, 4(4), 120-137.
  • Çermikli, A. H., & Tokatlıoğlu, İ. (2015). Yüksek ve orta gelirli ülkelerde teknolojik gelişmenin enerji yoğunluğu üzerindeki etkisi. Mustafa Kemal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 12(32), 1-22.
  • Daly, P., & Douglas, P. H. (1943). The production function for Canadian manufactures. Journal of the American Statistical Association, 38(222), 178-186.
  • Daly, P., Olson, E., & Douglas, P. H. (1943). The production function for manufacturing in the United States, 1904. Journal of Political Economy, 51(1), 61-65.
  • Desai, P. (1976). The production function and technical change in Postwar Soviet Industry: A reexamination. The American Economic Review, 66(3), 372-381.
  • Dewan, S., & Min, C. K. (1997). The substitution of information technology for other factors of production: A firm level analysis. Management Science, 43(12), 1660-1675.
  • Duffy, J., & Papageorgiou, C. (2000). A cross-country empirical investigation of the aggregate production function specification. Journal of Economic Growth, 5(1), 87-120.
  • Erden, L., & Çakmak, H. K. (2010). Türkiye'de kamu sermayesinin optimalliği: Bölgesel bir analiz. Gaziantep Üniversitesi Sosyal Bilimler Dergisi, 9(3), 533-551.
  • Erol, I., & Güzel, A. (2006). The elasticity of capital–land substitution in the housing construction sector of a rapidly urbanized city: Evidence from Turkey. Review of Urban & Regional Development Studies, 18(2), 85-101.
  • Evans, A. D., Green, C. J., & Murinde, V. (2002). Human capital and financial development in economic growth: New evidence using the Translog Production Function. International Journal of Finance & Economics, 7(2), 123-140.
  • Fang, Y. (2011). Economic welfare impacts from renewable energy consumption: The China experience. Renewable and Sustainable Energy Reviews, 15(9), 5120-5128.
  • Ferguson, C. E. (1965). Time-series production functions and technological progress in American manufacturing industry. Journal of Political Economy, 73(2), 135-147.
  • Goldberger, A. S. (1968). The interpretation and estimation of Cobb-Douglas Functions. Econometrica, 33(3/4), 464-472.
  • Goldfarb, D. (1970). A family of variable metric updates derived by variational means. Mathematics of Computation, 24, 23-26.
  • Griliches, Z. (1963). Specification and estimation of agricultural production functions. Journal of Farm Economics, 45, 419-428.
  • Griliches, Z. (1967). Production functions in manufacturing: some preliminary results. (In) Brown, M. Theory and Empirical Analysis of Production, (275-340). NBER.
  • Gunn, G. T. & Douglas, P. H. (1941). The production function for American manufacturing in 1919. The American Economic Review, 31(1), 67-80.
  • Gunn, G. T., & Douglas, P. H. (1942). The production function for American manufacturing for 1914. Journal of Political Economy, 50(4), 595-602.
  • Henningsen, A. ve Henningsen, G. (2011). Econometric estimation of the “Constant Elaticity of Substitution” function in R: Package micEconCES. Institute of Food and Resource Economics Working Paper, 2011/9.
  • Hoch, I. (1955). Report of the montreal meeting, September 10-13, 1954. Econometrica, 23(3), 324-337.
  • Hoch, I. (1958). Simultaneous equation bias in the context of the Cobb-Douglas Production Function. Econometrica, 26(4), 566-578.
  • Humphrey, D. B., & Moroney, J. R. (1975). Substitution among capital, labor, and natural resource products in American manufacturing. Journal of Political Economy, 83(1), 57-82.
  • Inglesi-Lotz, R. (2016). The impact of renewable energy consumption to economic growth: A panel data application. Energy Economics, 53, 58-63.
  • Işık, N., & Acar, M. (2006). İmalat sanayi ve tekstil sektörü için Cobb-Douglas, CES ve Translog üretim fonksiyonlarının tahmini. Sosyal Ekonomik Araştırmalar Dergisi, 1(11), 91-109.
  • İsmihan, M. (2013). Kronik istikrarsızlık ve potansiyel büyüme hızı: Türkiye deneyimi, 1960-2006. Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 24(1), 73-91.
  • Jorgenson, D. W. (1972). Investment behavior and the production function. The Bell Journal of Economics and Management Science, 3(1), 220-251.
  • Kaneda, H. (1965). Substitution of labor and non-labor inputs and technical change in Japanese agriculture. The Review of Economics and Statistics, 47(2), 163-171.
  • Kazi, U. A. (1980). The Variable Elasticity of Substitution Production Function: A case study for Indian manufacturing industries. Oxford Economic Papers, 32(1), 163-175.
  • Kemfert, C. (1998). Estimated substitution elasticities of a nested CES Production Function approach for Germany. Energy Economics, 20(3), 249-264.
  • Khalil, A. M. (2005). A cross section estimate of Translog Production Function: Jordanian manufacturing industry. Alınan yer http://ecommons.luc.edu/cgi/viewcontent.cgi?article=1061&context=meea (31.05.2017).
  • Kim, H. Y. (1992). The Translog Production Function and variable returns to scale. The Review of Economics and Statistics, 74(3), 546-552.
  • Kmenta, J. (1964). Some properties of alternative estimates of the Cobb-Douglas Production Function. Econometrica, 32(1/2), 183-188.
  • Kmenta, J. (1967). On estimation of the CES Production Function. International Economic Review, 8(2): 180-189.
  • Koesler, S., & Schymura, M. (2012). Substitution elasticities in a CES production framework an empirical analysis on the basis of non-linear least squares estimations. Centre for European Economic Research, 12-007.
  • Kök, R., & Yeşilyurt, M. E. (2006). İlk beş yüz imalat sanayi kuruluşunun etkinlik analizi ve sigma yakınsaması-Türkiye örneği: 1993-2000. Alınan yer http://kisi.deu.edu.tr/recep.kok/ilk500firma.pdf (31.05.2017).
  • Krishnapillai, S., & Thompson, H. (2012). Cross-section Translog Production and elasticity of substitution in U.S. manufacturing industry. International Journal of Energy Economics and Policy, 2(2): 50-54.
  • Kumar, T. K., & Gapinski, J. H. (1974). Nonlinear estimation of the CES Production Parameters: A Monte Carlo study. The Review of Economics and Statistics, 56(2), 563-567.
  • Kumbhakar, S. C. (1994). Efficiency estimation in a profit maximising model using flexible production function. Agricultural Economics, 10(2), 143-152.
  • Kurz, M., & Manne, A. S. (1963). Engineering estimates of capital-labor substitution in metal machining. The American Economic Review, 53(4), 662-681.
  • Leontief, W. (1964). An international comparison of factor costs and factor use. American Economic Review, 54(2), 335-345.
  • Li, K. W., & Liu, T. (2011). Economic and productivity growth decomposition: An application to post-reform China. Economic Modelling, 28(1), 366-373.
  • Lin, B., & Ahmad, I. (2016a). Technical change, inter-factor and inter-fuel substitution possibilities in Pakistan: A Trans-log Production Function approach. Journal of Cleaner Production, 126, 537-549.
  • Lin, B., & Ahmad, I. (2016b). Energy substitution effect on transport sector of Pakistan based on Trans-Log Production Function. Renewable and Sustainable Energy Reviews, 56, 1182-1193.
  • Lin, B., & Atsagli, P. (2017). Inter-fuel substitution possibilities in South Africa: A Translog Production Function approach. Energy, 121, 822-831.
  • Lin, B., Atsagli, P., & Dogah, K. E. (2016). Ghanaian energy economy: Inter-production factors and energy substitution. Renewable and Sustainable Energy Reviews, 57, 1260-1269.
  • Lin, B., & Xie, C. (2014). Energy substitution effect on transport industry of China-based on Trans-log Production Function. Energy, 67, 213-222.
  • Lovell, C. K. (1973a). CES and VES Production Functions in a cross-section context. Journal of Political Economy, 81(3), 705-720.
  • Lovell, C. K. (1973b). Estimation and prediction with CES and VES Production Functions. International Economic Review, 14(3), 676-692.
  • Lyu, S. J. L., White, F. C., & Lu, Y. C. (1984). Estimating effects of agricultural research and extension expenditures on productivity: A Translog Production Function approach. Journal of Agricultural and Applied Economics, 16(2), 1-8.
  • Maddala, G. S., & Kadane, J. B. (1966). Some notes on the estimation of the Constant Elasticity of Substitution Production Function. The Review of Economics and Statistics, 340-344.
  • Maddala, G. S., & Kadane, J. B. (1967). Estimation of returns to scale and the elasticity of substitution. Econometrica, Journal of the Econometric Society, 35(3/4), 419-423.
  • Marschak, J., & Andrews, W. H. (1944). Random simultaneous equations and the theory of production. Econometrica, 12(3/4), 143-205.
  • Meusen, W., & van Den Broeck, J. (1977). Efficiency estimation from Cobb-Douglas Production Functions with composed error. International Economic Review, 18(2), 435-444.
  • Mundlak, Y. (1961). Empirical production function free of management bias. Journal of Farm Economics, 43(1), 44-56.
  • Mundlak, Y., & Hoch, I. (1965). Consequences of alternative specifications in estimation of Cobb-Douglas Production Functions. Econometrica, 33(4), 814-828.
  • Nerlove, M. (1967). Recent empirical studies of the CES and related production functions. (In) Brown, M. The Theory and Empirical Analysis of Production, (55-136). NBER.
  • Oransay, G. (2017). Türkiye'de üretim düzeyini etkileyen faktörlerden elektrik tüketimi, istihdam ve sermaye Üçlüsü. Ege Akademik Bakış, 17(1), 13-22.
  • Ortega, C. B., & Lederman, D. (2004). Agricultural productivity and its determinants: revisiting international experiences. Estudios de Economía, 31(2), 133-163.
  • Pablo-Romero, M. D. P., & Gómez-Calero, M. D. L. P. (2013). A Translog Production Function for the Spanish provinces: Impact of the human and physical capital in economic growth. Economic Modelling, 32, 77-87.
  • Paroush, J. (1966). The h-homogeneous production function with constant elasticity of substitution: A note. Econometrica, 34(1), 225-227.
  • Pavelescu, F. M. (2011). Some aspects of the Translog Production Function estimation. Romanian Journal of Economics, 32(1), 41.
  • Pindyck, R. S. (1979). Interfuel substitution and the industrial demand for energy: An international comparison. The Review of Economics and Statistics, 61(2), 169-179.
  • Pollak, R. A., Sickles, R. C., & Wales, T. J. (1984). The CES-Translog: Specification and estimation of a new cost function. The Review of Economics and Statistics, 66(4), 602-607.
  • Sarı, R., & Soytas, U. (2007). The growth of income and energy consumption in six developing countries. Energy Policy, 35(2), 889-898.
  • Sato, K. (1967). A two-level constant-elasticity-of-substitution production function. The Review of Economic Studies, 34(2), 201-218.
  • Sato, R. (1970). The estimation of biased technical progress and the production function. International Economic Review, 11(2), 179-208.
  • Shahiduzzaman, M., & Alam, K. (2014). Information technology and its changing roles to economic growth and productivity in Australia. Telecommunications Policy, 38(2), 125-135.
  • Shen, K., & Whalley, J. (2013). Capital-labor-energy substitution in nested CES Production Functions for China. National Bureau of Economic Research. No. w19104.
  • Shen, K., Wang, J., & Whalley, J. (2015). Measuring changes in the bilateral technology gaps between China, India and the US 1979-2008. National Bureau of Economic Research. No. w21657.
  • Smith, V. E. (1945). Nonlinearity in the relation between input and output: The Canadian automobile industry, 1918-1930. Econometrica, 13(3), 260-272.
  • Smyth, R., Narayan, P. K., & Shi, H. (2011). Substitution between energy and classical factor inputs in the Chinese steel sector. Applied Energy, 88(1), 361-367.
  • Songur, M. (2015). Gelişmiş ve gelişmekte olan ülkeler için sabit ikame esneklikli üretim fonksiyonunun tahmini. EY International Congress on Economics II, 5-6 November 2015, Ankara. http://ekonomikyaklasim.org/eyc2015/userfiles/downloads/_Paper%20240.pdf
  • Songur, M. (2017). Türkiye’de beşeri sermaye ve fiziksel sermaye arasındaki ikame olanakları: Translog Üretim Fonksiyonu yaklaşımı. Çankırı Karatekin Üniversitesi İİBF Dergisi, (Aralık 2017 sayısında yayınlanmak üzere kabul edilmiş makale).
  • Söderbom, M., & Teal, F. (2004). Size and efficiency in African manufacturing firms: Evidence from firm-level panel data. Journal of Development Economics, 73(1), 369-394.
  • Şimşek, M., & Kadılar, C. (2013). Türkiye’de kamu sabit sermaye yatırımlarının verimliliği: Sınır testi ile ekonometrik bir yaklaşım, 1963–2002. Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 20(1), 87-102.
  • Taşdoğan, C. (2013). Yeni̇ teşvi̇k programı: Stokasti̇k sınır anali̇zi̇ ile bi̇r değerlendi̇rme. Ekonomik Yaklaşım, 24(89), 1-23.
  • Thorsnes, P. (1997). Consistent estimates of the elasticity of substitution between land and non-land inputs in the production of housing. Journal of Urban Economics, 42(1), 98-108.
  • Tsurumi, H. (1970). Nonlinear two-stage least squares estimation of CES Production Functions applied to the Canadian manufacturing industries, 1926-1939, 1946-1967. The Review of Economics and Statistics, 52(2), 200-207.
  • Tutulmaz, O., & Şahin, H. (2014). Türk havayolu ulaştırmasının açılım dönemine yönelik teknik etkinlik analizi: Bir stokastik sınır yöntemi uygulaması. Çukurova Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 18(2), 49-72.
  • Tzouvelekas, E. (2000). Approximation properties and estimation of the Translog Production Function with panel data. Agricultural Economics Review, 1(1), 27-41.
  • Van der Werf, E. (2008). Production Functions for climate policy modeling: An empirical analysis. Energy Economics, 30(6), 2964-2979.
  • Wakelin, K. (2001). Productivity growth and R&D expenditure in UK manufacturing firms. Research Policy, 30(7), 1079-1090.
  • Wesseh, P. K., & Lin, B. (2016). Output and substitution elasticities of energy and implications for renewable energy expansion in the ECOWAS region. Energy Policy, 89, 125-137.
  • Wesseh, P. K., Lin, B., & Appiah, M. O. (2013). Delving into Liberia's energy economy: Technical change, inter-factor and inter-fuel substitution. Renewable and Sustainable Energy Reviews, 24, 122-130.
  • White, H. (1980). Using least squares to approximate unknown regression functions. International Economic Review, 21(1), 149-170.
  • Wickens, M. R. (1970). Estimation of the vintage Cobb-Douglas Production Function for the United States 1900-1960. The Review of Economics and Statistics, 52(2), 187-193.
  • Woodland, A. D. (1975). Substitution of structures, equipment and labor in Canadian Production. International Economic Review, 16(1), 171-187.
  • Yuan, C., Liu, S., & Wu, J. (2009). Research on energy-saving effect of technological progress based on Cobb–Douglas Production Function. Energy Policy, 37(8), 2842-2846.
  • Zarembka, P. (1970). On the empirical relevance of the CES Production Function. The Review of Economics and statistics, 52(1), 47-53.
  • Zellner, A., Kmenta, J., & Dreze, J. (1966). Specification and estimation of Cobb-Douglas Production Function models. Econometrica, 34(4), 784-795.

Cobb-Douglas, CES, VES ve Translog Üretim Fonksiyonlarının Tahminleri Üzerine Genel Bir Değerlendirme

Yıl 2017, Cilt: 2 Sayı: 3, 235 - 278, 30.09.2017
https://doi.org/10.25229/beta.336297

Öz

Bu makalede farklı üretim fonksiyonlarının ampirik tahmini ile ilgili
yazına genel bir bakış sunulmaktadır. Bu bağlamda, dört farklı üretim
fonksiyonu (Cobb-Douglas, CES, VES ve Translog) ile ilgili ampirik yazın
incelenmiştir. Yazına bakıldığında görülmektedir ki, EKK tahmincisi üretim
fonksiyonlarının tahmininde sıklıkla kullanılmıştır. Öte yandan, Cobb-Douglas
Üretim Fonksiyonu çıktı esnekliğini tahmin etmek için yazında genellikle
kullanılmaktadır. Fakat, Cobb-Douglas Üretim Fonksiyonu girdiler arasındaki
ikame ilişkileri hakkında bilgi vermemektedir. Bu nedenle, ikame esnekliğinin
hesaplanmasına izin veren üretim fonksiyonları tercih edilmelidir.

Kaynakça

  • Açıkgöz, Ş., & Çatalbaş, G. K. (2013). Türkiye Ekonomisi’nde büyümenin kaynakları: Parametrik olmayan bir yaklaşım. Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 25(2), 1-22.
  • Akan, Y. (2002). Türk imalat sanayiinde faktör ikamesi, teknolojik gelişme ve ölçeğe göre getiri: Yeni CES üretim fonksiyonu yaklaşımı. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 16(3-4), 75-85.
  • Arrow, K. J., Chenery, H. B., Minhas, B. S., & Solow, R. M. (1961). Capital-labor substitution and economic efficiency. The Review of Economics and Statistics, 43(3), 225-250.
  • Avcı, T., & Çağlar, A. (2016). Stokastik sınır analizi: İstanbul Sanayi Odası'na kayıtlı firmalara yönelik bir uygulama. Siyaset, Ekonomi ve Yönetim Arastirmalari Dergisi, 4(2), 17-57.
  • Balistreri, E. J., McDaniel, C. A., & Wong, E. V. (2003). An estimation of US industry-level capital–labor substitution elasticities: Support for Cobb–Douglas. The North American Journal of Economics and Finance, 14(3), 343-356.
  • Batisani, N., & Yarnal, B. (2011). Elasticity of capital-land substitution in housing construction, Gaborone, Botswana: Implications for smart growth policy and affordable housing. Landscape and Urban Planning, 99(2), 77-82.
  • Bell, F. W. (1965). A note on the empirical estimation of the CES Production Function with the use of capital data. The Review of Economics and Statistics, 47(3), 328-330.
  • Berndt, E. R. (1976). Reconciling alternative estimates of the elasticity of substitution. The Review of Economics and Statistics, 58(1), 59-68.
  • Berndt, E. R., & Christensen, L. R. (1974). Testing for the existence of a consistent aggregate index of labor inputs. The American Economic Review, 64(3), 391-404.
  • Binswanger, H. P. (1974). The measurement of technical change biases with many factors of production. The American Economic Review, 64(6), 964-976.
  • Blundell, R., & Bond, S. (2000). GMM estimation with persistent panel data: An application to production functions. Econometric Reviews, 19(3), 321-340.
  • Brockway, P. E., Saunders, H., Heun, M. K., Foxon, T. J., Steinberger, J. K., Barrett, J. R., & Sorrell, S. (2017). Energy rebound as a potential threat to a low-carbon future: Findings from a new exergy-based national-level rebound approach. Energies, 10(1), 1-24.
  • Bronfenbrenner, M., & Douglas, P. H. (1939). Cross-section studies in the Cobb-Douglas Function. Journal of Political Economy, 47(6), 761-785.
  • Cantos, P., Gumbau‐Albert, M., & Maudos, J. (2005). Transport infrastructures, spillover effects and regional growth: evidence of the Spanish case. Transport Reviews, 25(1), 25-50.
  • Carter, H. O., & Hartley, H. O. (1958). A variance formula for marginal productivity estimates using the Cobb-Douglas Function. Econometrica, 26(2), 306-313.
  • Carter, M. R. (1984). Identification of the inverse relationship between farm size and productivity: An empirical analysis of peasant agricultural production. Oxford Economic Papers, 36(1), 131-145.
  • Chisasa, J., & Makina, D. (2013). Bank credit and agricultural output in South Africa: A Cobb-Douglas empirical analysis. The International Business & Economics Research Journal, 12(4), 387.
  • Chikabwi, D., Chidoko, C., & Mudzingiri, C. (2017). Manufacturing sector productivity growth drivers: Evidence from SADC member states. African Journal of Science, Technology, Innovation and Development, 9(2), 163-171.
  • Chmielarz, W., & Stachurski, A. (1986). A class of VES Production Function: Properties and estimation results. Control and Cybernetics, (3-4), 367-381.
  • Chow, G. C., & Li, K. W. (2002). China’s economic growth: 1952–2010. Economic Development and Cultural Change, 51(1), 247-256.
  • Christensen, L. R., Jorgenson, D. W., & Lau, L. J. (1973). Transcendental logarithmic production frontiers. The Review of Economics and Statistics, 55(1), 28-45.
  • Cobb, C. W., & Douglas, P. H. (1928). A theory of production. The American Economic Review, 18(1), 139-165.
  • Çalmaşur, G. (2016). Technical efficiency analysis in the automotive industry: A stochastic frontier approach. International Journal of Economics, Commerce and Management, 4(4), 120-137.
  • Çermikli, A. H., & Tokatlıoğlu, İ. (2015). Yüksek ve orta gelirli ülkelerde teknolojik gelişmenin enerji yoğunluğu üzerindeki etkisi. Mustafa Kemal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 12(32), 1-22.
  • Daly, P., & Douglas, P. H. (1943). The production function for Canadian manufactures. Journal of the American Statistical Association, 38(222), 178-186.
  • Daly, P., Olson, E., & Douglas, P. H. (1943). The production function for manufacturing in the United States, 1904. Journal of Political Economy, 51(1), 61-65.
  • Desai, P. (1976). The production function and technical change in Postwar Soviet Industry: A reexamination. The American Economic Review, 66(3), 372-381.
  • Dewan, S., & Min, C. K. (1997). The substitution of information technology for other factors of production: A firm level analysis. Management Science, 43(12), 1660-1675.
  • Duffy, J., & Papageorgiou, C. (2000). A cross-country empirical investigation of the aggregate production function specification. Journal of Economic Growth, 5(1), 87-120.
  • Erden, L., & Çakmak, H. K. (2010). Türkiye'de kamu sermayesinin optimalliği: Bölgesel bir analiz. Gaziantep Üniversitesi Sosyal Bilimler Dergisi, 9(3), 533-551.
  • Erol, I., & Güzel, A. (2006). The elasticity of capital–land substitution in the housing construction sector of a rapidly urbanized city: Evidence from Turkey. Review of Urban & Regional Development Studies, 18(2), 85-101.
  • Evans, A. D., Green, C. J., & Murinde, V. (2002). Human capital and financial development in economic growth: New evidence using the Translog Production Function. International Journal of Finance & Economics, 7(2), 123-140.
  • Fang, Y. (2011). Economic welfare impacts from renewable energy consumption: The China experience. Renewable and Sustainable Energy Reviews, 15(9), 5120-5128.
  • Ferguson, C. E. (1965). Time-series production functions and technological progress in American manufacturing industry. Journal of Political Economy, 73(2), 135-147.
  • Goldberger, A. S. (1968). The interpretation and estimation of Cobb-Douglas Functions. Econometrica, 33(3/4), 464-472.
  • Goldfarb, D. (1970). A family of variable metric updates derived by variational means. Mathematics of Computation, 24, 23-26.
  • Griliches, Z. (1963). Specification and estimation of agricultural production functions. Journal of Farm Economics, 45, 419-428.
  • Griliches, Z. (1967). Production functions in manufacturing: some preliminary results. (In) Brown, M. Theory and Empirical Analysis of Production, (275-340). NBER.
  • Gunn, G. T. & Douglas, P. H. (1941). The production function for American manufacturing in 1919. The American Economic Review, 31(1), 67-80.
  • Gunn, G. T., & Douglas, P. H. (1942). The production function for American manufacturing for 1914. Journal of Political Economy, 50(4), 595-602.
  • Henningsen, A. ve Henningsen, G. (2011). Econometric estimation of the “Constant Elaticity of Substitution” function in R: Package micEconCES. Institute of Food and Resource Economics Working Paper, 2011/9.
  • Hoch, I. (1955). Report of the montreal meeting, September 10-13, 1954. Econometrica, 23(3), 324-337.
  • Hoch, I. (1958). Simultaneous equation bias in the context of the Cobb-Douglas Production Function. Econometrica, 26(4), 566-578.
  • Humphrey, D. B., & Moroney, J. R. (1975). Substitution among capital, labor, and natural resource products in American manufacturing. Journal of Political Economy, 83(1), 57-82.
  • Inglesi-Lotz, R. (2016). The impact of renewable energy consumption to economic growth: A panel data application. Energy Economics, 53, 58-63.
  • Işık, N., & Acar, M. (2006). İmalat sanayi ve tekstil sektörü için Cobb-Douglas, CES ve Translog üretim fonksiyonlarının tahmini. Sosyal Ekonomik Araştırmalar Dergisi, 1(11), 91-109.
  • İsmihan, M. (2013). Kronik istikrarsızlık ve potansiyel büyüme hızı: Türkiye deneyimi, 1960-2006. Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 24(1), 73-91.
  • Jorgenson, D. W. (1972). Investment behavior and the production function. The Bell Journal of Economics and Management Science, 3(1), 220-251.
  • Kaneda, H. (1965). Substitution of labor and non-labor inputs and technical change in Japanese agriculture. The Review of Economics and Statistics, 47(2), 163-171.
  • Kazi, U. A. (1980). The Variable Elasticity of Substitution Production Function: A case study for Indian manufacturing industries. Oxford Economic Papers, 32(1), 163-175.
  • Kemfert, C. (1998). Estimated substitution elasticities of a nested CES Production Function approach for Germany. Energy Economics, 20(3), 249-264.
  • Khalil, A. M. (2005). A cross section estimate of Translog Production Function: Jordanian manufacturing industry. Alınan yer http://ecommons.luc.edu/cgi/viewcontent.cgi?article=1061&context=meea (31.05.2017).
  • Kim, H. Y. (1992). The Translog Production Function and variable returns to scale. The Review of Economics and Statistics, 74(3), 546-552.
  • Kmenta, J. (1964). Some properties of alternative estimates of the Cobb-Douglas Production Function. Econometrica, 32(1/2), 183-188.
  • Kmenta, J. (1967). On estimation of the CES Production Function. International Economic Review, 8(2): 180-189.
  • Koesler, S., & Schymura, M. (2012). Substitution elasticities in a CES production framework an empirical analysis on the basis of non-linear least squares estimations. Centre for European Economic Research, 12-007.
  • Kök, R., & Yeşilyurt, M. E. (2006). İlk beş yüz imalat sanayi kuruluşunun etkinlik analizi ve sigma yakınsaması-Türkiye örneği: 1993-2000. Alınan yer http://kisi.deu.edu.tr/recep.kok/ilk500firma.pdf (31.05.2017).
  • Krishnapillai, S., & Thompson, H. (2012). Cross-section Translog Production and elasticity of substitution in U.S. manufacturing industry. International Journal of Energy Economics and Policy, 2(2): 50-54.
  • Kumar, T. K., & Gapinski, J. H. (1974). Nonlinear estimation of the CES Production Parameters: A Monte Carlo study. The Review of Economics and Statistics, 56(2), 563-567.
  • Kumbhakar, S. C. (1994). Efficiency estimation in a profit maximising model using flexible production function. Agricultural Economics, 10(2), 143-152.
  • Kurz, M., & Manne, A. S. (1963). Engineering estimates of capital-labor substitution in metal machining. The American Economic Review, 53(4), 662-681.
  • Leontief, W. (1964). An international comparison of factor costs and factor use. American Economic Review, 54(2), 335-345.
  • Li, K. W., & Liu, T. (2011). Economic and productivity growth decomposition: An application to post-reform China. Economic Modelling, 28(1), 366-373.
  • Lin, B., & Ahmad, I. (2016a). Technical change, inter-factor and inter-fuel substitution possibilities in Pakistan: A Trans-log Production Function approach. Journal of Cleaner Production, 126, 537-549.
  • Lin, B., & Ahmad, I. (2016b). Energy substitution effect on transport sector of Pakistan based on Trans-Log Production Function. Renewable and Sustainable Energy Reviews, 56, 1182-1193.
  • Lin, B., & Atsagli, P. (2017). Inter-fuel substitution possibilities in South Africa: A Translog Production Function approach. Energy, 121, 822-831.
  • Lin, B., Atsagli, P., & Dogah, K. E. (2016). Ghanaian energy economy: Inter-production factors and energy substitution. Renewable and Sustainable Energy Reviews, 57, 1260-1269.
  • Lin, B., & Xie, C. (2014). Energy substitution effect on transport industry of China-based on Trans-log Production Function. Energy, 67, 213-222.
  • Lovell, C. K. (1973a). CES and VES Production Functions in a cross-section context. Journal of Political Economy, 81(3), 705-720.
  • Lovell, C. K. (1973b). Estimation and prediction with CES and VES Production Functions. International Economic Review, 14(3), 676-692.
  • Lyu, S. J. L., White, F. C., & Lu, Y. C. (1984). Estimating effects of agricultural research and extension expenditures on productivity: A Translog Production Function approach. Journal of Agricultural and Applied Economics, 16(2), 1-8.
  • Maddala, G. S., & Kadane, J. B. (1966). Some notes on the estimation of the Constant Elasticity of Substitution Production Function. The Review of Economics and Statistics, 340-344.
  • Maddala, G. S., & Kadane, J. B. (1967). Estimation of returns to scale and the elasticity of substitution. Econometrica, Journal of the Econometric Society, 35(3/4), 419-423.
  • Marschak, J., & Andrews, W. H. (1944). Random simultaneous equations and the theory of production. Econometrica, 12(3/4), 143-205.
  • Meusen, W., & van Den Broeck, J. (1977). Efficiency estimation from Cobb-Douglas Production Functions with composed error. International Economic Review, 18(2), 435-444.
  • Mundlak, Y. (1961). Empirical production function free of management bias. Journal of Farm Economics, 43(1), 44-56.
  • Mundlak, Y., & Hoch, I. (1965). Consequences of alternative specifications in estimation of Cobb-Douglas Production Functions. Econometrica, 33(4), 814-828.
  • Nerlove, M. (1967). Recent empirical studies of the CES and related production functions. (In) Brown, M. The Theory and Empirical Analysis of Production, (55-136). NBER.
  • Oransay, G. (2017). Türkiye'de üretim düzeyini etkileyen faktörlerden elektrik tüketimi, istihdam ve sermaye Üçlüsü. Ege Akademik Bakış, 17(1), 13-22.
  • Ortega, C. B., & Lederman, D. (2004). Agricultural productivity and its determinants: revisiting international experiences. Estudios de Economía, 31(2), 133-163.
  • Pablo-Romero, M. D. P., & Gómez-Calero, M. D. L. P. (2013). A Translog Production Function for the Spanish provinces: Impact of the human and physical capital in economic growth. Economic Modelling, 32, 77-87.
  • Paroush, J. (1966). The h-homogeneous production function with constant elasticity of substitution: A note. Econometrica, 34(1), 225-227.
  • Pavelescu, F. M. (2011). Some aspects of the Translog Production Function estimation. Romanian Journal of Economics, 32(1), 41.
  • Pindyck, R. S. (1979). Interfuel substitution and the industrial demand for energy: An international comparison. The Review of Economics and Statistics, 61(2), 169-179.
  • Pollak, R. A., Sickles, R. C., & Wales, T. J. (1984). The CES-Translog: Specification and estimation of a new cost function. The Review of Economics and Statistics, 66(4), 602-607.
  • Sarı, R., & Soytas, U. (2007). The growth of income and energy consumption in six developing countries. Energy Policy, 35(2), 889-898.
  • Sato, K. (1967). A two-level constant-elasticity-of-substitution production function. The Review of Economic Studies, 34(2), 201-218.
  • Sato, R. (1970). The estimation of biased technical progress and the production function. International Economic Review, 11(2), 179-208.
  • Shahiduzzaman, M., & Alam, K. (2014). Information technology and its changing roles to economic growth and productivity in Australia. Telecommunications Policy, 38(2), 125-135.
  • Shen, K., & Whalley, J. (2013). Capital-labor-energy substitution in nested CES Production Functions for China. National Bureau of Economic Research. No. w19104.
  • Shen, K., Wang, J., & Whalley, J. (2015). Measuring changes in the bilateral technology gaps between China, India and the US 1979-2008. National Bureau of Economic Research. No. w21657.
  • Smith, V. E. (1945). Nonlinearity in the relation between input and output: The Canadian automobile industry, 1918-1930. Econometrica, 13(3), 260-272.
  • Smyth, R., Narayan, P. K., & Shi, H. (2011). Substitution between energy and classical factor inputs in the Chinese steel sector. Applied Energy, 88(1), 361-367.
  • Songur, M. (2015). Gelişmiş ve gelişmekte olan ülkeler için sabit ikame esneklikli üretim fonksiyonunun tahmini. EY International Congress on Economics II, 5-6 November 2015, Ankara. http://ekonomikyaklasim.org/eyc2015/userfiles/downloads/_Paper%20240.pdf
  • Songur, M. (2017). Türkiye’de beşeri sermaye ve fiziksel sermaye arasındaki ikame olanakları: Translog Üretim Fonksiyonu yaklaşımı. Çankırı Karatekin Üniversitesi İİBF Dergisi, (Aralık 2017 sayısında yayınlanmak üzere kabul edilmiş makale).
  • Söderbom, M., & Teal, F. (2004). Size and efficiency in African manufacturing firms: Evidence from firm-level panel data. Journal of Development Economics, 73(1), 369-394.
  • Şimşek, M., & Kadılar, C. (2013). Türkiye’de kamu sabit sermaye yatırımlarının verimliliği: Sınır testi ile ekonometrik bir yaklaşım, 1963–2002. Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 20(1), 87-102.
  • Taşdoğan, C. (2013). Yeni̇ teşvi̇k programı: Stokasti̇k sınır anali̇zi̇ ile bi̇r değerlendi̇rme. Ekonomik Yaklaşım, 24(89), 1-23.
  • Thorsnes, P. (1997). Consistent estimates of the elasticity of substitution between land and non-land inputs in the production of housing. Journal of Urban Economics, 42(1), 98-108.
  • Tsurumi, H. (1970). Nonlinear two-stage least squares estimation of CES Production Functions applied to the Canadian manufacturing industries, 1926-1939, 1946-1967. The Review of Economics and Statistics, 52(2), 200-207.
  • Tutulmaz, O., & Şahin, H. (2014). Türk havayolu ulaştırmasının açılım dönemine yönelik teknik etkinlik analizi: Bir stokastik sınır yöntemi uygulaması. Çukurova Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 18(2), 49-72.
  • Tzouvelekas, E. (2000). Approximation properties and estimation of the Translog Production Function with panel data. Agricultural Economics Review, 1(1), 27-41.
  • Van der Werf, E. (2008). Production Functions for climate policy modeling: An empirical analysis. Energy Economics, 30(6), 2964-2979.
  • Wakelin, K. (2001). Productivity growth and R&D expenditure in UK manufacturing firms. Research Policy, 30(7), 1079-1090.
  • Wesseh, P. K., & Lin, B. (2016). Output and substitution elasticities of energy and implications for renewable energy expansion in the ECOWAS region. Energy Policy, 89, 125-137.
  • Wesseh, P. K., Lin, B., & Appiah, M. O. (2013). Delving into Liberia's energy economy: Technical change, inter-factor and inter-fuel substitution. Renewable and Sustainable Energy Reviews, 24, 122-130.
  • White, H. (1980). Using least squares to approximate unknown regression functions. International Economic Review, 21(1), 149-170.
  • Wickens, M. R. (1970). Estimation of the vintage Cobb-Douglas Production Function for the United States 1900-1960. The Review of Economics and Statistics, 52(2), 187-193.
  • Woodland, A. D. (1975). Substitution of structures, equipment and labor in Canadian Production. International Economic Review, 16(1), 171-187.
  • Yuan, C., Liu, S., & Wu, J. (2009). Research on energy-saving effect of technological progress based on Cobb–Douglas Production Function. Energy Policy, 37(8), 2842-2846.
  • Zarembka, P. (1970). On the empirical relevance of the CES Production Function. The Review of Economics and statistics, 52(1), 47-53.
  • Zellner, A., Kmenta, J., & Dreze, J. (1966). Specification and estimation of Cobb-Douglas Production Function models. Econometrica, 34(4), 784-795.
Toplam 112 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İşletme
Bölüm Sayılar
Yazarlar

Mehmet Songur

Filiz Elmas Saraç

Yayımlanma Tarihi 30 Eylül 2017
Gönderilme Tarihi 28 Ağustos 2017
Kabul Tarihi 23 Ekim 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 2 Sayı: 3

Kaynak Göster

APA Songur, M., & Elmas Saraç, F. (2017). Cobb-Douglas, CES, VES ve Translog Üretim Fonksiyonlarının Tahminleri Üzerine Genel Bir Değerlendirme. Bulletin of Economic Theory and Analysis, 2(3), 235-278. https://doi.org/10.25229/beta.336297