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Abstract 

Tolerance design is a vital factor which influences product and process development. Further, it 

determines the manufacturing cost, the functionality and quality of a product. It is evident that optimal 

tolerance normally leads to produce ample parts, better operation of mechanical systems and excellent 

assembling. In contrast, tight tolerance leads to increase in manufacturing cost for an assembly. An ideal 

relationship exists among production cost and operation, while determining the optimum tolerance. 

Based on this relation a new approach by implementing the Non-traditional techniques: Genetic 

Algorithm (GA), Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) and Differential 

Evolution (DE) for determining the optimum tolerance, zero percentage rejection and manufacturing cost 

considering the varying quality loss constants for an assembly namely overrunning clutch assembly, is 

discussed in this paper. From the result obtained, it is evident that, the proposed approach is best suitable 

for solving problems involving complex assemblies. 
(Received in May 2015, accepted in September 2015. This paper was with the authors 1 month for 1 revision.) 
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1. INTRODUCTION 

In an industry, designing of parts is a very crucial issue. It is more laborious to ascertain the 

required tolerance that is essential for the given dimension. Dissimilarity in component 

dimension and its aspects is sure to happen. However, the estimation of the required variation 

in assembly parameter is the goal of tolerance optimization. Nevertheless, depending upon 

either on the assembly or any of its part, the cost of the product is immediately influenced by 

tolerance and manufacturability. Stiff tolerance leads to excessive cost, the loose tolerance 

results in the manufacturing concern or rejection of the part. Therefore, the traditional 

designers assign tolerance depending on their knowledge and according to what the 

handbooks prescribe or depending upon the prevalent standard [1]. Earlier approaches gives 

neither guarantee its function nor minimize the cost. Only when the cost tolerance relations 

are well established, mathematical prototypes can be designed to obtain proper tolerance [2]. 

Consequently, in term of an amalgamation of data of the product design, the numerical model 

becomes the foundation for an optimization approach. Hence, the development of tolerance 

design strategies becomes complex, yet important. Consequently, the learning of 

mathematical optimization approaches for tolerance approach becomes an acute research area 

owing to hypnotically and concrete reasons. For the past umpteen years various tolerance 

techniques have evolved and have led to the production of extraordinary quality goods. Thus, 

in the process of tolerance development, traditional tolerance methods play a vital role. Such 

approaches and processes help in the formation and assessment of proficiency about product 

and design process and cost evaluation. 
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1.1  Literature review 

Numerous scholars were keen on improving different kinds of tolerance allocation approaches 

for complex assemblies. Fathi [3]
 
resolved a designing of tolerance by incorporating the 

quality loss. In this approach, the optimization approach is implemented to obtain the part 

tolerance and also to minimize the cost of production. Taguchi [4] to tolerance allocation has 

been extensively conferred in other works (Askin and Goldberg [5]; Zhang and Huq [6], 

Kapur [7]). Singh et al. [8] search extensive on Lagrange multiplier to find the optimal 

tolerance using the Genetic Algorithm. Sivakumar et al. [9] and Noorul Haq et al. [10, 11] 

introduced evolutionary algorithms to get the optimum tolerance for the mechanical 

assemblies. Prabhaharan et al.[12] introduced the non-traditional approach to find the 

optimum tolerance and to overcome the traditional tolerance approach. Prabhaharan et al. [13] 

imported a metaheuristic approach as an ant colony algorithm, to simultaneously allocate the 

tolerance and manufacturing cost. Krishna and Rao [14] incorporated an approach to reduce 

the cost of manufacturing. Huang and Shiau [15] evolved the tolerance synthesis of a sliding 

vane rotary compressor’s parts to improve quality and reduce manufacturing cost. Huang and 

Zhong [16] used the optimization method to reduce the manufacturing cost, tolerance and also 

to advance the rate of acceptance of the parts. Singh et al. [17] suggested a methodology by 

allowing the continuous cost function to get the optimal solution using the GA. Siva Kumar et 

al. [18] introduced a hybrid methodology for optimal solution synthesis for models involving 

different manufacturing process. Muthu et al. [19] suggested non-traditional method to 

minimize the cost of manufacturing and improve quality and to obtain optimal solution by 

considering both least manufacturing cost and quality loss over the lifecycle of the invented 

assembly. Lu et al. [20] suggest an approach to attain least manufacturing cost and proper 

assimilability product to obtain an optimal solution. Cheng and Maghsoodloo [21], Wu et al. 

[22] and Huang et al. [23] used nonlinear programming method to design the tolerance. 

Cheng and Tsai [24, 25] solved allocation of statistical tolerances with exponential cost 

function and obtained closed-form solution of optimal tolerances. Gill [26] considered a 

manufacturing cost as important for the manufacturing processes using activity based cost 

model. Lestan et al. [27] have proposed the evolutionary optimization techniques, considered 

to be a Genetic Algorithm (GA) to measure the scheduling efficiency. Sasiadek [28] 

suggested theoretical approach for an assembly involving elements design and complex 

machine assembly. Govindarajalu et al. [29] suggested a methodology for a piston cylinder 

assembly to reduce the manufacturing cost. Cheng et al. [30] used a tolerance design method 

for hydrostatic rotary table involving a different design methodology by implementing PSO. 

Sivakumar et al. [31] presented the tolerance design procedure for complex assemblies 

implementing DE and NSGA-II. Ragu [32] suggested a methodology to reduce the uneven 

progression of die clearance involved in sheet metal products. 

However, Coelho [33] was deemed to: (1) optimal tolerance, cost related to loss in quality 

and manufacturing cost as the objectives; (2) use of self-organizing migrating algorithm 

(SOMA) and SOMA using Gaussian operator (GSOMA); (3) SOMA and GSOMA take more 

time to get the solution and they will not give the optimum solution globally for the different 

values of quality loss coefficient A; and (4) in such a process, the computational efforts are at 

a high rate and other intelligent optimization techniques have their own limitations. 

This paper takes significant steps to overcome the limitations of earlier techniques. 

Therefore this paper considers simultaneously, the optimal tolerance, quality loss and 

manufacturing cost as its sole objective. Briefly speaking, the followings are the benefits of 

the non-traditional method: 1) Search – method based on population. Therefore, world-wide 

optimum solution is viable. 2) It is simpler than the methods that are stated in the review. 3) It 

is easy to solve the problems to get global optimum solution for complex assemblies. 4) It is 

appropriate for resolving all kinds of complex assemblies. And (5) it is computationally 
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greater and quicker than the techniques stated. Thus, the solution of the tolerance design 

becomes easier and simpler to obtain by implementing this technique. 

The major contributions of the tolerance region are cited below: 1. This paper suggests a 

common method to tolerance allocation. 2. The objectives that are cited in this paper, as given 

by Coelho [33], determine the optimal tolerance, reduce the total cost, zero percentage 

rejection and quality loss. 3. This paper uses the GA, NSGA-II and DE, which overcomes all 

the limitations found in the review. 

The remaining portion of this paper is planned as follows: Section 2 deals with the 

problem description and optimization model. Section 3 briefly explains the optimization 

methods. Section 4 gives the simulation results and analysis. Conclusion and future work are 

given in Section 5. 

2. PROBLEM DESCRIPTION AND OPTIMIZATION MODEL 

Coelho [33] presented a one-way clutch assembly. This assembly clearly demonstrated the 

tolerance based on GA, NSGA-II and DE approaches. The three components overrunning 

clutch are the hub, the roller and the cage. Fig. 1 shows the overrunning clutch accumulated 

by establishing a cage within the hub and four rollers. 

 

Figure 1: Overrunning clutch. 

      Table I gives the cost data for the clutch tolerance (tolerances in 10
−4

 inches, cost in $). 

The assembly response function is the contact angle Y between the roller and centre of the 

hub. Its value should be within the tolerance bound. It is shown as below. 
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where, a is constant. 

      The values of Zi (i = 1, 2, 3) are 2.17706, 0.9, 4 inch, the nominal value and Y are 0.122  

0.035 rad. 

Table I: Cost data for the clutch tolerance (tolerances in 10−4 inches, cost in $). 

Hub tolerance Cost Roll tolerance Cost Cage tolerance Cost 

2 19.380 1 3.513 1 18.637 

4 13.220 2 2.480 2 12.025 

8 5.990 4 1.240 4 5.732 

16 4.505 8 1.240 8 2.686 

30 2.065 16 1.200 16 1.980 

60 1.240 30 0.413 30 1.447 

120 0.825 60 0.413 60 1.200 

- - 120 0.372 120 1.033 
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Tolerance bounds are shown below: 

 0.0001 ≤ t1, t3 ≤ 0.0120 in 

 0.0001 ≤ t2 ≤ 0.0005 in 

      The main aim of the proposed methodology is to minimize the manufacturing cost and 

quality loss. 

      The literature [33]
 
explains the functionality of the manufacturing cost as given below. 
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Loss in quality function is expressed as shown below: 
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based on constraints shown below: 
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where: 

t1 – tolerance of the hub,   t2  – tolerance of the hub,           t3  – tolerance of the roller, 

A – quality loss coefficient,   tk  – tolerance stack up limit for k,  K – no. of dimensional chain, 

σk  – standard deviation of k,  k – dimensional chain index. 

3. OPTIMIZATION METHODS 

The proposed evolutionary techniques (GA, NSGA-II and DE) are stated as follows. 

3.1  Genetic algorithm 

Goldberg’s GA [34] is a stochastic universal search. It is an optimization method that imitates 

the natural procedure in a biological origin. Darwin’s evolutionary theory inspired the 

invention of GA. A GA activates the biological evolutionary method. First of all, the initial 

individual population is taken. And then, the mutation in every reproduction, the crossover 

and other genetic operators are applied. By doing such optimization, encoding of the 

population of each person is done on to a chromosome or a string. This denotes feasible 

solution to a concrete problem. About a known objective function, the aptness of an 

individual is estimated. By substituting the portions of their generated data, the extremely fit 

those are chances to duplicate. The result of such products is called new offspring, possessing 
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the best qualities of the parents. Then, later crossover by changing some generations in the 

strings, mutation is applied. As a result, among the entire population the new offspring can 

replace any unfit individual. Until the satisfactory solution is formed, this reproduction cycle 

or the evolution selection is repeated. 

The basic procedure for GA can be explained as follows: 

Step 1. Variable coding by proper representation. 

Step 2. Random generation of chromosomes of the first population. 

Step 3. Fitness task of every person in the population is evaluated. 

Step 4. Halt when stopping situation arrives; otherwise, skip to 5
th

 step. 

Step 5. Mutation with crossover along with reproduction is implemented. 

Step 6. A new creation form of the separate individuals is created to attain form step 5. 

Step 7. Go to step 3. 

GA operators: 

The parameter values of GA are: population size = 100, mutation probability = 0.15, total 

number of generations = 100, crossover probability = 0.8. 

3.2  NSGA-II 

Deb et al. [35] offered the NSGA-II. Basically, NSGA-II varies from non-dominated sorting 

genetic algorithm (NSGA) execution in several forms. Initially obtained optimal solutions are 

secured by NSGA-II as it is a robust securing system. Then, NSGA-II uses a faster non-

dominated sorting technique. Since NSGA-II is self-governing it does not require a measura-

ble limit. Fig.2 shows an iteration of NSGA-II, where, P1 – Parent population, Qt – Offspring 

population, F1, F2, F3 – Non-dominated fronts, Pt+1 – New parent population, Rt – Fast non-

dominated fronts and N – Size of population. 

 

Figure 2: An iteration procedure of the NSGA-II algorithm. 

NSGA-II operators: 

Parameters of NSGA-II technique are: variable type = real variable, size of population = 100, 

the probability of crossover = 0.7, real-parameter mutation probability = 0.25, real-parameter 

SBX parameter = 10, real-parameter mutation parameter = 100, total no. of generations = 100. 

3.3  Differential evolution 

Differential evolution (DE), suggested by Storn and Price [36] is a robust algorithm for 

complex assemblies, and utilizes the vector differences of entities for agitating the population 

segment. At the start, DE consist of a population of N and each entity is an n-dimensions 
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vector Yi = {Y1, Y2, …., Yn}. In the search space selected, the vectors are generated at random 

and during the process of evolution, entities will be handled by the process of crossover, 

mutation, and selection. 

      Mutation operation: in this process, with the distinct mutant methods, the developed path 

of a mutant vector δi is different and there is a variation among the weighted vector difference. 

The approved mutant procedures are listed by Das and Suganthan [37] as shown below. 

– DE/rad/1 :   i = YR1 + A (YR2 – YR3) 

– DE/rad/2 :   i = YR1 + A (YR2 – YR3) + A (YR4 – YR5) 

– DE/best/1 :  i = Ybest + A (YR1 – YR2)         (9) 

– DE/best/2 :  i = Ybest + A (YR1 – YR2) + A (YR3 – YR4) 

– DE/current to best/1 :  i = Yi + A (Ybest – Yi) + A (YR1 – YR2) 

where the R1, R2, R3, R4, R5, which are all different from the index i, are different among 

themselves individually and chosen at random within the range [1, N]. Ybest is the best one of 

the existent population. The factor that controls the difference of vectors is termed as scaling 

factor, denoted by A. 

      Crossover operation: From mutant vector δi and the target vector Yi; the trial vector Ui is 

developed by binomial crossover as shown below. 
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where i = 1, 2, . . ., N; j = 1, 2, . . ., n, jran is a chosen integer at random from [1, n] which 

secures Ui, acquired at the minimum of single individual from the mutant vector δi, ranj is a 

uniform random number within 0 and 1. CP is the crossover probability and its value is 

between [0, 1]. 

      Selection operation: to preserve final ones for the next iteration, the developed trial vector 

Ui is correlated with the target vector Yi. The procedure is defined as shown below.  

 otherwise
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DE implementation: 

The basic procedure of DE is summarized as follows. 

Step 1. Randomly initialize the population of entity for DE. 

Step 2. The aim values of each individual are checked, and the optimum individual with 

the optimized objective value is selected. 

Step 3. Based on Eq. (9) in order to attain all entities respective mutant vector, mutation 

operation is executed individually. 

Step 4. Evaluate crossover operation among every individual and the related mutant 

vector based on Eq. (10) so as to attain individual’s trial vector. 

Step 5. The aim values of the trial vectors are checked. 

Step 6. Perform selection operation among all entities and its related trial vector based on 

Eq. (11)in order to form new entities for the next generation. 

Step 7. Optimized value among the best entity of the local new population is selected. The 

newly obtained entity is compared with the existing one and among them the optimal fit entity 

is selected and updated. 

Step 8. From the step 3 entire procedure is repeated, if the criteria is not satisfied or else 

the output obtained is the optimal solution. 
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DE operators: 

The parameters of DE technique are: strategy = DE/rand/1/bin, crossover constant CR = 0.9, 

number of population NP = 100, F = 0.5 and total number of generations = 100. 

4. SIMULATION RESULTS AND ANALYSIS 

This problem has been solved on a Pentium IV computer using VC++. The simulation results 

of GA, NSGA-II and DE techniques are listed in Table II, III and IV. The results obtained 

from Coelho [33] are listed in Table V and compared with GA, NSGA-II and DE. Better 

results are obtained with GA, NSGA-II and DE techniques compared to SOMA and GSOMA 

when the quality loss coefficient A = 0, 1, 52, 100, 300 and 520 is considered. Convergent 

graph of GA, NSGA-II and DE for various values of A are exposed in Figs. 3, 4 and 5, 

respectively. From the Fig. 6, it is evident that when the value of A increases, the total cost 

also increases. From the Figs. 3, 4 and 5, it can be inferred that the closeness of results for the 

overrunning clutch assembly, indicates the consistency of performance of GA, NSGA-II and 

DE algorithm. GA converges only after 20 iterations for values of A = 0, 1, 52, 300 and 520 

whereas NSGA-II and DE algorithm converges within 20 iterations much earlier than SOMA 

and GSOMA. This shows that the NSGA-II and DE algorithms perform better than SOMA 

and GSOMA in terms of convergence, optimal results and reduced computational time. 

Table II: Optimal tolerances, total cost, constraints and CPU time using GA. 

A t1 (10−4 inch) t2 (10−4 inch) t3 (10−4 inch) Z (t) Constraints CPU time(s) 

0 0.01191 0.00049 0.01174 10.082 0.101793 5 

1 0.00118 0.00050 0.01101 10.084 0.059140 5 

52 0.01036 0.00050 0.00533 10.982 0.072423 5 

100 0.00941 0.00046 0.00428 11.752 0.063853 5 

300 0.00533 0.00050 0.00297 12.438 0.044777 5 

520 0.00461 0.00050 0.00297 13.102 0.042077 5 

Table III: Optimal tolerances, total cost, constraints and CPU time using NSGA-II. 

A t1 (10−4 inch) t2 (10−4 inch) t3 (10−4 inch) Z (t) Constraints CPU time(s) 

0 0.012000 0.000500 0.012000 10.0200 0.103398 3 

1 0.012000 0.000500 0.012000 10.0462 0.103398 3 

52 0.010019 0.000500 0.005767 10.9779 0.072745 3 

100 0.007857 0.000500 0.004628 11.4335 0.06040 3 

300 0.005222 0.000500 0.003207 12.4199 0.045254 3 

520 0.004254 0.000500 0.002674 13.0471 0.053150 3 

Table IV: Optimal tolerances, total cost, constraints and CPU time using DE. 

A t1 (10−4 inch) t2 (10−4 inch) t3 (10−4 inch) Z (t) Constraints CPU time(s) 

0 0.012000 0.000499 0.012000 10.02000 0.103371 2.5 

1 0.010020 0.000500 0.008361 10.04621 0.082429 2.5 

52 0.010020 0.000500 0.008361 11.05389 0.082425 2.5 

100 0.007856 0.000500 0.006104 11.48318 0.065914 2.5 

300 0.005220 0.000500 0.003598 12.43126 0.046702 2.5 

520 0.004254 0.000500 0.002674 13.04822 0.039640 2.5 
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Table V: Comparison of SOMA[33], GSOMA[33], GA, NSGA-II and DE. 

A SOMA [33] GSOMA [33] GA NSGA-II DE 

0 11.63862 11.63786 10.082 10.0200 10.02000 

1 11.64147 11.64223 10.084 10.0462 10.04621 

52 11.78462 11.78578 10.982 10.9779 11.05389 

100 11.91916 11.91896 11.752 11.4335 11.48318 

300 12.46852 12.46874 12.438 12.4199 12.43126 

520 13.04713 13.04712 13.102 13.0471 13.04822 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Convergent graph for different values of A using GA. 

 

 

 

 

 

 

 

 

 

 

Figure 4: Convergent graph for different values of A using NSGA-II. 
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Figure 5: Convergent graph for different values of A using DE. 
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Figure 6: Comparison of total cost Z(t) Vs quality loss coefficient (A) using SOMA [33], GSOMA 

[33], GA, NSGA-II and DE. 

5. CONCLUSION AND FUTURE WORK 

This paper assures to achieve zero percentage rejection, quality loss and least cost by the 

implementation of GA, NSGA-II and DE. Moreover, there is a considerable reduction in 

computational effort, too. From the results it is evident that GA, NSGA-II and DE approaches 

are far more superior in their performance than SOMA and GSOMA when quality loss 

constants are considered. Thus, it is deemed that GA, NSGA-II and DE methods give better 

results than Cuelho [33].As far as optimization issue is concerned, it is concluded that, GA, 

NSGA-II and DE are the apt solution. Obviously then, this paper keeps open the doors for 

more research on the mode of optimization methods to solve complex assemblies. 
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Appendix A. Pseudo code for NSGA-II [35] 

The pseudo code for NSGA-II algorithm is expressed as below: 

1. Generate a casual parental population for size N. 

2. Prioritize the population in the order of Non-domination. 

3. All solutions are assigned with an equivalent fitness with the level of non-domination. 

4. In order to generate a fresh N-size population offspring, the common selection for 

binary tournament, mutation operators and recombination are used. 

5. The expanded 2N-size population is formed by combining children population parental 

population. 

6. The expanded population is classified depending on the non-domination. 

7. N-size population is filed up with individuals, beginning from the best ones. 

8. In order to make sure of the diversity, whether a front is able to somewhat fill the 

coming generation, the crowding comparison is invoked. 

9. Till “stop” situation arrives, steps 2 to 8 are repeated. One “stop” is specified by a 

number of generations. 
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