
34TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

DOI: 10.2507/34th.daaam.proceedings.037

METHODS AND ALGORITHMS FOR ANALYSING AND

PREDICTING ERRORS IN SERVER SYSTEMS

Plamena Koleva-Stoynova & Velko Iltchev

This Publication has to be referred as: Koleva-Stoynova, P[lamena] & Iltchev, V[elko] (2023). Methods and

Algorithms for Analysing and Predicting Errors in Server Systems, Proceedings of the 34th DAAAM International

Symposium, pp.0288-0293, B. Katalinic (Ed.), Published by DAAAM International, ISBN 978-3-902734-41-9, ISSN

1726-9679, Vienna, Austria

DOI: 10.2507/34th.daaam.proceedings.037

Abstract

Logging is important in monitoring and predicting server failures. The information is stored in log files, which contains

(usually as plain text) information about messages, error reports, file requests and file transfers. Reasons for logging are

diagnostic, audit, capturing stack traces or data. The purpose of this work is to develop a software architecture for analysis

and prediction of errors in server systems. First, messages are collected from client servers and stored on the main server.

Then a message parser recognizes the lexical and syntactic structure by using context-free grammar. Key components are

stored in a relational database. A synthesizer is connected to a relational database. It is used to recreate the original

messages when a user needs to read them. The most important part of this work is the recognition of interconnections

between messages and environment with the help of artificial intelligence, which will thereafter be used to predict failures.

Keywords: logging; detection of errors; parsing; prediction.

1. Introduction

Logging is an essential practice, but it comes with potential issues that can interfere with its effectiveness. One

common problem is the lack of storage space, leading to a low performance. Data acquisition generates a significant

amount of information, consuming large storage space and impacting server performance. This information can also be

sensitive, making proper handling crucial to avoid security issues. An illustrative instance is detailed in publication [1],

wherein a swift expansion of the database can ultimately lead to disk capacity reaching full utilization, consequently

giving rise to a severe issue. Another issue is the log noise, where excessive or irrelevant logs make it challenging to

diagnose actual problems effectively. For example, log entries might include messages that are not directly related to

system health, security, or performance. These irrelevant messages obscure critical information. Additionally, excessive

logging can impact an application's performance and response time. Furthermore, logs may not always provide sufficient

context, making it harder to understand the full context of an issue. Finally, analysing a large volume of logs can be

complex and time-consuming, which requires significant resources. An approach to address these challenges involves the

utilization of artificial intelligence techniques capable of discerning pertinent data from the unstructured log entries. An

integral component of this solution is the anomaly detection. Through the analysis of individual data points, future errors

can be readily anticipated and rectified promptly [2].

- 0288 -

34TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

To perform an accurate analysis of the data log entries, log text parsing is necessary. It's noteworthy that in [3], a novel

approach to anomaly detection based on log data known as NeuralLog is employed, which eliminates the necessity for

log parsing. The reason for creating this work is to develop an architecture for analysis and prediction of errors in server

systems. The proposed paper is organized as follows: section 2 describes related to the research works, section 3 describes

the proposed method with topology and the connection with neural network. The conclusion closes the article.

2. Related Works

2.1. The platform LogPAI

Using advanced algorithms for predicting and parsing methods, scientists from the Chinese University of Hong Kong

developed a platform for collecting, parsing, and analysing logs from server systems. This project consists of large

collection of system log datasets for AI-powered log analytics (loghub), a toolkit for automated log parsing (log parser),

a log analysis toolkit for automated anomaly detection (loglizer) and log-based impactful problem identification using

machine learning(log3C). All these are components of the same platform.

At first, logs are generated at runtime and aggregated into a centralized place with a data streaming pipeline, such as

Flume and Kafka [4]. Then a log parser converts unstructured log messages into a map of structured events, based on

which sophisticated machine learning models can be applied. [5] Afterwards the structured logs can be sliced into short

log sequences through interval window, sliding window, or session window. Then, feature extraction is performed to

vectorize each log sequence, for example, using an event counting vector. [6] Finally, the anomaly detection models are

trained to check whether a given feature vector is an anomaly or not. [7]

2.2. Software Logstash

Another software example is Logstash. It is an open-source data collection engine with real-time pipelining

capabilities. It can dynamically unify data from disparate sources and normalize the data into destinations. It serves as a

crucial component in the ELK (Elasticsearch, Logstash, Kibana) stack, which is widely used for log management and

data analysis. As a data collector, Logstash can ingest data from diverse sources such as files, syslog, redis, and beats.

Once the data is collected, Logstash processes it through a series of filters in a pipeline. These filters can parse, structure,

modify, and enrich the incoming data, making it more organized and suitable for analysis.

At first, inputs are used to get data into Logstash. These inputs are file, syslog, redis, beats. Then, filters process

information in pipeline. Used filters are: grok, mutate, drop, clone and geoip. Grok-filter parses and structures the

unstructured log. Mutate-filter performs general transformations on event fields, such as rename, remove or modify. Drop-

filter drops an event completely. Clone-filter makes a copy of an event. Geoip-filter adds information about geographical

location of IP addresses.

Outputs are the final phase of the Logstash pipeline. An event can pass through multiple outputs, but once all output

processing is complete, the event has finished its execution. With its flexible and configurable nature, Logstash allows

users to handle a wide variety of data formats and sources, making it a powerful tool for managing large-scale log data

and other data streams in real-time. [8]

2.3. Software Fluentd

Fluentd is another software example. It is an open-source data collector, which unifies the data collection and

consumption for a better use and understanding of data. It collects, processes and aggregates logs. Fluentd was designed

to work as a unified layer for logging a central component that aggregates data from multiple sources that vary formatted

data in JSON objects and to different output destinations can forward. One of Fluentd's key strengths lies in its pluggable

architecture, which allows users to extend its capabilities with custom plugins for data enrichment, filtering, and

transformation. This enables seamless integration with different data storage and analytics systems, such as Elasticsearch.

[9]

3. Proposed Method

The objective of this development is to define an architecture for the analysis and prediction of errors within server

systems. The proposed approach delineates the interrelationship connecting client servers, the primary server, and a

relational database. Client Servers establish a connection with the main server, facilitating the transmission of log

messages from client servers to the primary server for aggregation. Utilizing a parser, log messages' lexical and syntactic

structure is discerned through the application of context-free grammar. Consequently, facilitating the distribution and

storage of key components into designated tables within the relational database is important. A synthesizer possesses

authorization to access this database. In instances where a user seeks to access a specific message, the synthesizer

reconstructs it by applying a template alongside pertinent components sourced from the database.

- 0289 -

34TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

Subsequently, using an artificial intelligence, the neural network identifies linkages between messages and their

contextual surroundings, thereby enhancing comprehension of their origin and implications. In the fourth figure presented

below, the depicted approach can be observed.

Fig. 1. Proposed Architecture

An essential aspect of this study involves investigating the interrelationships within this architecture and

comprehending the behavioural patterns of data. The interplay between neural network analysis and a relational database

offers a holistic approach to data-driven decision-making, prediction, and understanding complex systems. This

integration capitalizes on the strengths of both methodologies, leading to more accurate, contextually aware analyses and

predictions.

3.1. Extraction of facts

Important point in this work is the extraction of facts from messages. The process involves identifying and isolating

specific structured information within the log data. This procedure encompasses the recognition of typical patterns within

log message formats, achieved through techniques like regular expressions or advanced sequence modelling. Pertinent

details such as timestamps, error codes, user identifiers, and IP addresses within log messages are targeted for extraction

through algorithmic means. Log messages encompass a combination of structured and unstructured data. While structured

data, such as timestamps and numerical values, is relatively straightforward to extract, unstructured data like error

descriptions necessitates the application of advanced natural language processing methods. Fact extraction can leverage

grammar expressions for recurring patterns, while custom rules can be tailored to capture domain-specific information by

identifying distinct keywords or phrases. Extracted facts find utility across various analytical pursuits, including trend

analysis, anomaly detection, predictive modelling, and system monitoring.

1 [appbf]/var/lxc/cXXXX/var/perp/app/bruteforce/mon/current
2

3 2021-06-08 20:04:06.932583 gotdata: {"ua":"Mozilla/5.0 (Windows NT 10.0;

Win64; x64) AppleWebKit/537.36(KHTML,like Gecko) Chrome/83.0.4087.0

Safari/537.36","app":"wordpress","ip":"1.2.3.4","type":"comments","path":"/

home/customer/www/autoexample.com/public_html","login":"unknown","host":"ww

w.autoexample.com"}

Fig. 2. Example of Log Message

The provided example on figure 2 serves as a representation of a simple textual format messages. Line 1 shows the

name of file and its full path destination. Line 3 shows the plain text message with key components. To extract the

fundamental elements from the message, using of the context-free grammar is needed. Therefore, the example will be

depicted as following graph:

- 0290 -

34TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

Fig. 3. Syntax tree of log message example

The represented syntax tree illustrates the message dissected into its constituent elements. The entire message is

denoted by the abbreviation "S" and subsequently divided into two segments, namely "time" and "msg." The acronym

"msg" signifies "message." Subsequently, the "time" segment is further subdivided into three components: "timestamp,"

"current time," and "data received" indicated by "got data." The data received is structured in JSON (JavaScript Object

Notation) format, enhancing accessibility to key elements. For instance, for the "app" key within messages of the same

type, the corresponding value imparts insights about the utilized application.

3.2. Allocation of facts

Another significant aspect within this study pertains to the dissemination of factual elements across a database.

Numerous tables will be established for the purpose of retaining values derived from the log message. These tables will

be linked via a primary identifier. This connectivity is advantageous for facilitating convenient retrieval during message

reconstruction or data analysis endeavours. Thereafter, a neural network will be connected to this database with the aim

to be trained to analyse and predict future errors.

Fig. 4. Communication between table from database and neural network

The depiction in Figure 4 showcases the process. By utilizing the "Select" command, structured data within the

database is extracted and enters the initial phase of the neural network. The neural network is pre-trained to assess

outcomes generated by such commands. The message is then stored in an intermediate format, but with a distinct word

order.

3.3. Prediction of future events

Collection of facts is needed for analytics of the whole picture. The use of time series forecasting with log messages

involves the use of statistical and mathematical techniques to predict future patterns and trends within the log data. By

treating log messages as sequential data points ordered by time, time series forecasting methods can be applied to

anticipate potential future events, anomalies, or changes in the log data. This approach leverages historical log message

data to establish patterns and relationships over time. The collected information is then used to develop predictive models

that can project how the log messages might evolve in the future. This could include predicting potential system failures,

performance issues, or unusual activities based on past patterns and trends observed in the log messages.

- 0291 -

34TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

Time series forecasting techniques, such as ARIMA (Autoregressive Integrated Moving Average), Exponential

Smoothing, or more advanced machine learning algorithms like LSTM (Long Short-Term Memory) neural networks, can

be applied to log messages. These methods analyse temporal dependencies, seasonal variations, and other recurring

patterns to generate predictions. The incorporation of time series forecasting with log messages is particularly valuable

in proactive system maintenance, resource optimization, and anomaly detection. It aids administrators in identifying

potential issues before they escalate, thus enhancing overall system reliability and performance. The method described

herein finds application in the subsequent scholarly work titled “The importance of time series data filtering for predicting

the direction of stock market movement using neural networks” [10]. Searching for errors in such huge files is slow and

inefficient. The solution we offer, we can quickly find errors of one type that occurred in a certain time interval from

certain servers. A neural network training will allow to analyse these errors and therefore predict future ones.

4. Conclusion and future work

The core issue discussed in this article pertains to server logging, specifically the challenge of excessive disk space

use due to logging activities. This problem can be attributed to overly detailed logging, necessitating a focus on capturing

essential information. Furthermore, the practice of log rotation, which entails the periodic creation of new log files

accompanied by the compression or removal of older log files, is identified as another factor contributing to increased

disk space consumption. Additionally, misconfigurations of logging levels, such as the use of INFO or DEBUG, may

exacerbate this issue.

While logging remains a vital component of system monitoring, its storage in raw text format can impose a substantial

space burden. To mitigate this, it is imperative to selectively extract and retain only the crucial data, subsequently storing

it within a database. This structured approach enables the generation of templates, facilitating enhanced comprehension

of log messages by clients seeking to discern the underlying issues. This paper introduces a novel approach to analyse

and forecast errors within server systems. To achieve this objective, an architecture is built to establish connections

between client servers and the central server. A parser is employed to extract and disseminate information into a database,

which serves as the foundation for making predictions regarding future errors. The primary emphasis of this research lies

in the examination of interconnections within this architectural framework.

Future research will encompass the development of advanced machine learning models for more accurate error

anticipation and classification. It will also focus on creating real-time predictive systems to minimize service disruptions.

Interdisciplinary collaboration, involving fields like cybersecurity and data analytics, will yield innovative methods for

improving system reliability. Research will explore human-machine interaction for enhanced error diagnosis and

resolution, particularly in complex server environments. Additionally, scalability in cloud-based systems, privacy and

security considerations, economic impact assessments, and open-source collaboration will be central to shaping the future

of error analysis and prediction.

The exploration of methods and algorithms for analysing and predicting errors in server systems yields valuable

insights into enhancing system reliability and performance. By meticulously investigating various techniques, this study

contributes to the advancement of error detection, diagnosis, and prevention strategies. The integration of sophisticated

algorithms and predictive models equips server administrators with proactive tools to mitigate disruptions, minimize

downtime, and optimize system operations. As technology continues to evolve, the continuous refinement of these

methods promises a more resilient and efficient server ecosystem, enabling organizations to uphold robust performance

standards and deliver seamless user experiences.

5. Acknowledgments

This paper is dedicated to my grandmother, Ing. MSc. Paraskeva Ilieva, for her constant faith in my abilities. Her

influence on my academic and personal growth has been profound, and I am grateful for the wisdom and support she has

provided. This work stands as a tribute to her memory, which continues to shape and guide my endeavors.

6. References

[1] Korbar D, “Problem with rapid transaction log growth in SQL server databases,” in DAAAM International Vienna,

2010

[2] Min Du, Feifei Li, Guineng Zheng, Vivek Srikumar, “DeepLog: Anomaly Detection and Diagnosis from System

Logs,” in CCS '17: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,

New York, 2017

[3] Van-Hoang Le, Hongyu Zhang, “Log-based anomaly detection without log parsing,” in Proceedings of the 36th

IEEE/ACM International Conference on Automated Software Engineering, Melbourne, 2021

[4] WangJun, Wang Wenhao, Chen Renfei, „Distributed Data Streams Processing Based on Flume/Kafka/Spark“ in 3rd

International Conference on Mechatronics and Industrial Informatics (ICMII 2015), October 2015, Zhuhai, China

- 0292 -

34TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

[5] A. Zbiciak and T. Markiewicz, "A new extraordinary means of appeal in the Polish criminal procedure: the basic

principles of a fair trial and a complaint against a cassatory judgment," Access to Justice in Eastern Europe, vol. 6,

p. 1–18, March 2023

[6] S. He, J. Zhu, P. He and M. R. Lyu, “Experience Report: System Log Analysis for Anomaly Detection,” in 27th

IEEE International Symposium on Software Reliability Engineering, ISSRE 2016, Ottawa, ON, Canada, October

23-27, 2016, 2016

[7] Shilin He, Qingwei Lin, Jian-Guang Lou, Hongyu Zhang, Michael R. Lyu, Dongmei Zhang, “Identifying impactful

service system problems via log analysis,” in ESEC/FSE 2018: Proceedings of the 2018 26th ACM Joint Meeting

on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 26

October 2018

[8] “Parsing Logs with Logstash,” [Online]. Available: https://www.elastic.co/guide/en/logstash/current/advanced-

pipeline.html. Accessed on: 24 August 2023

[9] “What is Fluentd?,” Cloud Native Computing Foundation (CNCF), [Online]. Available:

https://www.fluentd.org/architecture. Accessed on: 24 August 2023

[10] Ive Botunac, Ante Panjkota & Maja Matetic, “The importance of time series data filtering for predicting the direction

of stock market movement using neural networks,” in 30th DAAAM international symposium on intelligent

manufactoring and automation, Vienna, Austria, 2019

- 0293 -

	037

