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Abstract. Denote by Z, the number of critical points of a random trigonometric
polynomial of degree < v. We prove that as v — oo the expectation of Z, is asymptotic

to QV\/g while its variance is asymptotic to door Where doo = 0.35.
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1. Introduction

A random trigonometric polynomial of degree < v is a trigonometric
polynomial of the form

1 1 < ,
n(t) = an + N mzzzl(am cosmt + by, sinmt), t € R/27Z,

where an,, by, are independent normally distributed random variables with
mean 0 and variance 1.

The number 7, of critical points of such a random polynomial is itself a
random variable. The goal of this paper is to describe two important statis-
tical quantities associated to this random quantity, namely its expectation,
E,,, and its variance, V,,. We are particularly interested in the behavior of
these quantities as the degree v goes to infinity. In probabilistic parlance, 1,
is a (stationary) Gaussian process on the unit circle R/27Z and as v — oo
this process approaches the singular process called white noise.

*Invited paper
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The main result of this paper shows that there exist (explicit) positive
constants cq, co such that

E, ~cuv, V,~cov asv — oo.

The above estimates imply an interesting concentration phenomenon.
Suppose that we ask what are the odds that the number of critical points
of a random trigonometric polynomial differs by more than 1% from the
expected number of critical points. In other words we ask what is the
probability of the event

‘ZV - EV‘ Z %
The Chebyshev inequality shows

f 10
P(Z, — E,| > 01E,) < —"" 0 cy

~ — 0.
= 001E,)2 ~ dv VT

Thus, the above event is highly unlikely if the degree v is very large. This
indicates that the highly oscillatory parts of a random trigonometric poly-
nomials have a dominant effect in the creation of critical points. This is
reminiscent of the classical Poincaré phenomenon: the area of a large di-
mensional round sphere tends to be concentrated on a narrow tube around
an Equator! of fixed and small codimension.

The statistics of the critical set of the above random function is identical
to the statistics of the zero set of the random function

_dn((t) _ 1
it v

Equivalently, consider the rescaled random function

1 t e
W,,; (mcm cos (1/) + md,, sin <u>> , t€|—my, v,

where ¢p,,d,, are independent random variables with identical standard
normal distribution, and the random variable

v
Z (—mayy, sinmt + mby, cosmt).

m=1

A

o, (1) =

Z,, := the number of zeros of ®,(t) in the interval [—7v, 7v].

!By Equator on a sphere centered at the origin of an Euclidean space we mean the
intersection of the sphere with a vector subspace.
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Note that the expectation of Z, is precisely the expected number of critical
points of a random trigonometric polynomial in the space

T, = span{cos(mﬁ), sin(mf); m=0,...v },

equipped with the inner product
2
(u,v) = / u(f)v(6)do,
0
and Gaussian measure
dy(u) = ——Zmzye 2 du

We let E((¢), and respectively var((), denote the expectation, and respec-
tively the variance, of a random variable (. The random function &, is a
stationary Gaussian process with covariance kernel

™ 1%

R,(t) = E(®,(t)®,(0)) = % m? cos <mt> .
m=1

The Rice formula, [2, Eq. (10.3.1)], implies that

)

E(Z,) =2v <

where
1 < 1
Ao(v) = R,(0) = mﬁmz::lrrﬂ and A\o(v) = —R,(0) = mzzjlm‘l.

This proves that

3
(1.1) E(Z,)) ~ 2n\/; as m — oo.
The following is the main result of this paper.

Theorem 1.1. Set

- 1 - 1
Ao = lim A\g(v) = 3 A2 := lim Ao(v) := 5

V—r00 V—r00
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Then for any t € R the limit lim,_,o R, (t) ezists, it is equal to

Roolt) =

+ 1
— 263/ 7-2 cos Tdr = / )\2 COS()\t)dA, Vit S R,
0 0

and

32— R2)% — ho(RL)? |
foo(t)=( : (/\2) QRQ )2( ) (\/@erooarcsmpoo),
0~ 1150)2

and B
CRL(OZ— R2) + (R..)*Re
P = T2 RZ)hg — M(R)?

Moreover, the constant 6« is positive.?

We should perhaps put this result in some perspective. Recently, GRAN-
VILLE and WIGMAN [4] have investigated the behavior of the number N, of
zeros of a random trigonometric polynomial of the form

1
V%

P,(t) Z(amcosmt+bmsinmt), t €10,2m),
m=1

where a,,, b,, are independent normally distributed random variables with
mean 0 and variance 1. It is known that (see [3, 6])

2
E(N,) ~ \/;u as v — 00,

but the authors show that a much more precise result is true. More precisely,
they prove that there exists ¢ > 0 such that as v — oo the random variable

N, = \/tfy(Ny ~E(N,))

2Numerical experiments indicate that doo ~ 0.35.
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converges to the standard Gaussian. Our strategy is inspired from [4] and
we believe that a central limit theorem is valid in the case of the statistics
of critical points as well. We plan to pursue this aspect elsewhere.

Let us observe that the space of trigonometric polynomials of degree
< v can be identified with the space U, spanned by the eigenfunctions of
the Laplacian of S' corresponding to eigenvalues < L := v?. The estimate
(1.1) can be rewritten as

(1.3) E(Z,) ~ \/gdim U, as v — oo,

In [5] we proved a higher dimensional generalization of this estimate. More
precisely we have shown that for any m > 0 there exists an explicit
positive constant C,, > 0 such that for any compact, connected, smooth
m-~dimensional Riemann manifold if we denote by Z;, the number of critical
points of a random linear combination of eigenfunctions of the Laplacian
A, corresponding to eigenvalues < L, then

E(Zp) ~C,dimUy as L — oo.

Theorem 1.1 suggests the following higher dimensional question: does there
exist a constant ¢ > 1, possibly dependent on M and g, such that

1
—dimUp < var(Z;) < cdimUy, as L — oo 7.
c

2. Proof of the main theorem

We follow a strategy inspired from [4]. The variance of Z, can be com-
puted using the results in [2, §10.6]. We introduce the Gaussian field

D, (1)
)= | e
P}, (t2)

Its covariance matrix depends only on ¢t =ty — t;. We have (compare with
[4, Eq. (17)])

Ao Ry(t) 0 R,//(t)
ol RO N cmm 0 | _ 4B
O=1"0" “r@w x| [ Bt c]

R, 0 —RIt) A
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As explained in [6], to apply [2, §10.6] we only need that Z(¢) is non-
degerate. This is established in the next result whose proof can be found
in Appendix A.

Lemma 2.1. The matriz Z(t) is nonsingular if and only if t € 2nvVZ.
O

For any vector
1
z
T = 2] er?
T3
T4
we set

1

6_% Ele,x)

. 1
Pnel®) = oGy

Then, the results in [2, §10.6] show that

21) BBz~ [ ([ b (0.0, dndel) el
l/>< v

As in [4] we have

=l | ¢ —c_ptat
=(t) _[* Q_l],Q_O BTA7"B.
More explicitly,

Q=C-B'A"'B

:[ Ao RZ(t)]

—RI(t) A
B 1 [ 0 —R,’,(t)}[ o —R,,(t)]_[ 0 Rf,(t)}
A5 — R, (t)? [R,(1) 0 —R,(t) o —R,(t) 0
Ay —R) (R,)* [Xo R I —p
:[—Rz Az]‘A%—Rz {Ru Ao]:“[—p 1]’
where
(A5 — R2)A2 — Mo(Ry)? Ry(A\5 — Ry) + (R))’R,
S X~ R T T O - RN - MR

We want to emphasize that in the above equalities the constants Ay and Ao
do depend on v, although we have not indicated this in our notation.
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Remark 2.2. The nondegeneracy of = implies that p,(t) # 0 and
lpv(t)| < 1, for all t & 2nvZ. O

We obtain as in [4, Eq. (24)]

_ 1 1 p
detZE =det A-det Q = p?(\2 — R?)(1 — 2,91—[ }
IU’(O I/)( p) N(l—PQ) P 1
We can now rewrite the equality (2.1) as (t = to — t1)
- E(Z,
y1+2py1y2+y2 dud dt1dt
— ‘y1y2|e 2“(1 p2) | y]. 2y2| 2| 1 2‘
Il,><Il, dr /(N )1 — p?)
e 5 o
yiyele .
Il,><Il, A VO~ R2)(1 - p?)
From [1, Eq. (A.1)] we deduce that
y3 +2py1y2+v3 duqd 1— p2
/ lyryale  20-2 | Zjll 2y2| = 2p 1+ Larcsinp .
T ™ /1= p2
Hence

1
E(Z)) - E(Z,) = 7r2/1 L2 R2 — (\/1—7+parcsmp) |dt dto]
o x1I, 2

1 A — R2)Ng — o
(2.2) = 2/ ( f,) o 0 (\/1 - +parcsmp> |dtydta].
T JI,xI, (A2 — R2)3

= 1u(1)
The function f,(t) = f,(t2 — t1) is doubly periodic with periods 27v, 27v
and we conclude that

03 B2k =BZ)-Bz) =2 [ na

We conclude that

var(Z,) = E((Z,)2) + E(Z)) — (E(Z))" = E(1Z)2) - [E(Z,)],

(2.4) w [T Ao A
R (f”(” )\o)dt+zy\/;
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To complete the proof of Theorem 1.1 we need to investigate the integrand
in (2.3). This requires a detailed understanding of the behavior of R, as
v — oo. It is useful to consider more general sums of the form

v

1 mit 1 Y .omt
AVﬂ”(t) = m m’ cos 77 By,r(t):m Z m” sin 7,7” > 1.
1

m= m=1

Note that if we set z := cos m7t + 2 sin m7t We have

v

o 1 T.m
Ayﬂﬂ(t) + ’lByﬂn(t) = ﬁ 71m z .
m=
=:Cy,r(t)
Observe that
2.5 RM(¢) = ! r L o t
( . ) v ( )_ _ﬂ_VkJrg € ik+2 u,k+2( ) .

We set

I 1
A (1) = ﬂ“/o 7" cos TdT, Boo,(t) := s

t
/ 7" sin rdr.
0

Observe that R, = A, 2 and Ry = A 2. We have the following result.

Lemma 2.3.
max(1,t)
(26) |4 () = Ao (O)] + 1 Bu(t) = Boop (0] = O (22 ) v >0,
where, above and in the sequel, the constant implied by the O-symbol is

independent of t and v. In particular

1 1
Cu,r(t) = Cr(t) = gl

(2.7) lim

v—oo prtl

t
/ e dr, vVt > 0.
0
Proof. We have

= e Someos () = 2 3 { (2 o ()} (£).

m=1

=:5,(t)
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The term S, (t) is a Riemann sum corresponding to the integral

/t f(rydr, f(r):=71"cosT,
0

and the subdivision
(v—1)t
v

< 1.

t
0<—-<--- <
1%

of the interval [0, ¢]. A simple application of the mean value theorem implies
that there exist points

e [0t

)
v v

such that . .
t
[ 1 =3 s

We deduce that

o5 =1 3 (16027 (%) ).
’ 1

Now set
M(t) :== sup |f'(7)]
0<r<t
Observe that
tr—1 <t<1
o(t"), t>1
We deduce
t t2
S,(t) — / Fryr| < M)
0

This, proves the A-part of (2.6). The B-part is completely similar. O
We need to refine the estimates (2.6). Recall that [m], = m(m —
1)---(m—r+1), r>1. We will express C,,(t) in terms of the sums

- A d [z— 2zt
D, — Tm:r k) _ . r
0= Yl = (324 ) = 1 (52

k=1
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Using the classical formula, [7, §1.4, Eq. (24d)],

m" = ZS’(T, k)[m
k=1

where S(r, k) are the Stirling numbers of the second kind, we deduce,

T T dk 1- ZV+1
28)  Cur(Q) = 3 S R)Duk(Q) = Y S(r k)2 <) |
k=1 k=1

1—=2

Lemma 2.4. Set 0 := o, and f(0) = Sin - Then

[
. (v+1)t
1 ) 2sin ( o ) o)t
(29) ﬁDy,r(t) = ’LT’I"! W e 2v

r i0 r4+1—j
_eitzilfj <V+ 1>tj : ( ¢t >
= j f9)
Proof. We have

L\ & dr—i
D, .(t)=2" —(1— 2! (1—2)7t
A== ;(ﬂ) T P TOR

ST(] — vt T r . L FI4r—]
= r!(i_z)rﬂ) - Z ( ) v+ Ui =D g

_ler(lf V+1 v |Z V+1 z T
(1= )t 1—2 ’

Using the identity

7 2
we deduce
z  aew
1—2z 2sin (21/)
and
. (V+1)t z(u+1+2r)t
. rlsin(~5>=)e

r . .
. v +1 ez(rJrlf])B

Dy, (t) =1 — - — eyl iT“_J( , > .

v,r or sm”‘l(%)e( nglj) ; j (2 sin 0)7‘""1—]
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. 1)t . —j
. 2sin ((VZI/) ) V+r)t v+ 1 629 1+r—j
— /er! - N @ 7 . P Zt /Ll ]
(2sin )" Z ' 2sin6

r+1

Multiplying both sides of the above equality by (%) we get (2.9). O
Lemma 2.4 coupled with the fact that the function f(6) is bounded on
[0, 5] yield the following estimate.

tT‘—f—l
(2.10) ——=D,,(t)=0(1), Vv, 0<t <.

pr+1
Using (2.10 )and the identity S(r, 1) = 1 in (2.8) we deduce that there exists
K = K, > 0 such that for any v > 0 and any ¢ € [0, 7v] we have

o (e) o

r+1 r+1
i (Cunt) - D) ) <K, Z —
j=0

so that

1 1

(2.11) (Gt - Do) \ <K

Using Lemma 2.4 we deduce

r+1 i
(2.12) lim ——=ReD, ,(t)=I,(t):=i"r! 251n< ) Yo thll i .'
J:
7=1

v—oo YT r+1

uniformly for ¢t on compacts. The estimate (2.11) implies that

r+1
lim Re D, ,(t) = I,(t).

v oo L

We have the following crucial estimate whose proof can be found in
Appendix A.

Lemma 2.5. For every r > 0 there exists C, > 0 such that for any
v > 0 we have

1 1 C,trtt —1

WDV’T(I:) — ﬂ’ﬁ[r(t) ~ 7m, VO < t S V.
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Using Lemma 2.5 in (2.11) we deduce

1 1 C,trtl -1
. v,r - r < — ’ < '
(2.13a) VTHC, (t) tm[ (t)' ,FED) Y0 <t <7y
t .
(2.13b) () = 10, (1) = / e dr,
0

Using (2.6) and (2.13a) we deduce that for any nonnegative integer r there
exists a positive constant K = K, > 0 such that

K, tt1 —1
(2.14) |Cl/77f(t) - Cr(t)| S TW.

Coupling the above estimates with (2.6) we deduce

(2.15) Co,r(t)=Cr(t)+ O <i> , YO<t<uv,

where the constant implied by the symbol O depends on k, but it is inde-
pendent of v. The last equality coupled with (2.5) implies that

1
(2.16) R¥ ) =R®(t)+ 0 <V> , VO<t<uw.
We deduce that, for any ¢t > 0 we have

lim fu(t) = foo(t)a

V—r00

where f, is the function defined in (2.2), while

32 P2y Y (P )2
(217 fult) = LT MUl (A resing ).

(A§ — R%)>
where ) )
)\0 - AO(OO) = VILIEO )\O(V) = 37 AQ = VILIEO )\Q(V) = ga

RI(N — RY) + (R,,)*R
o(t) = lim p,(t) = =0 07 - ool %0
e N VI 1) W W0 i

We have the following result whose proof can be found in Appendix A.
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Lemma 2.6.

(2.18a) | Roo(t)] < R (0), [RL(8)] < |RL(0)], VE>0,
(2.18h) Roo(t), Ro(t), R'.(t)=0 (1) as t = oo,
(2.18¢) (A2 — R% )Xy — X(R.)* >0, Vt>0.
Ryo(t) = 3 — 512 + 145t* + O(t°),
(2.184) R (t) = =gt + 5t> + O(°), as t = 0.
O
We set
0(t) := max(t, 1), t>0.
We find it convenient to introduce new functions
1 1 1 1
J(t) = —=——R,(t) = ——R,(t), H,(t) = ——R"(t) = ————R/(t).
Gult) 1= g () = o D). o) = s BUD) = =5 RU)
Using these notations we can rewrite (2.18¢) as
(2.19) (1-G2) - iz(G;O)Q >0, Vt>0.
=m(t)
The equalities (2.18d) imply that
(2.20) n(t) = 3y o(t%), vt <« 1
) 4375 ’ '
Then \
fut) = 2] x €y (t) x (\/ L—p3 + py arCSinpu) )
Ao(v)
where
o (1= Gu) - A6 (1))?
Y (1= Gy(t)?)3? ’
and
ORI - R+ (R)PR,  —HJ(1-GY)+ (GG,
PR — R2a(v) — M(R))? (1-G2) - 2,
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Lemma 2.7. Let k € (0,1). Then
C.(t)=0(), YO<t<v™",

where the constant implied by O-symbol is independent of v and t € [0,v™"),
but it could depend on k.

Proof. Observe that for ¢ € [0,27"] we have

Golt) =1 ;;0(8) 24+ 0@Y, QL) = —iiEZ;t +O()
so that
(1-G, (1)) % = (iiﬁ;&) e (1+0(1)),
and
(1= Gult) ~ 325 (61) = Of#")
so that €,(t) = O(). 0

Lemma 2.8. Let k € (0,1),

Then as v — oo and t > v~ " we have

B (@), 1 ! :
(221) €, = Coo x <1 0 < vn(t) a8 | veemE) | v2n(t>> > ’

and
(2.22)

€, (t)=Cos (£)+O <

+

(GL)? ) 1 1
IW@F”+VMOWOW2lﬁdwﬁﬁm+v%dﬁﬂ)’

uniformly for ¢ > v=".

Proof. Observe that

(2.23) G2 = <Goo +0 (i) )2 LY 2 4o (V;(t)> ,
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so that

1= Goo(®)2(t) = (1 - Goo(t)?) (1 +0 (M) ) .

For t > v=" we have

1 1 ' ' B
vo(t)y(t) =¢ (1/1_"> = o(1) uniformly in ¢t > v™" as v — oo.
Hence
a2 o -3 1
(1-Gy) " =(1-G6) (1 +0 (yé(wtg ) 7
(2.29) y(t) =1-G% ().

Next observe that

B 1 1
(2.25) Xo(v) = ?’(;Vj) =3+ v 140w,
B 1 1
Aa(v) = 5(5’;:) =:+ v i+0o®w?)
and

Xo(v) 3+v1+0@?)
Ao(v) % +v=1+0(r2)

5 10
= g — 37/_1 + O(V_2).

Using (2.23) and the above estimate we deduce

2 )\0(1/) 7\2
(1 - Gl/(t) ) - ):2(1/)) (GV)
A , 10, , 1 1
(2.26) =(1-G%) - X—E(Gmf +@(Gm)2 +0 (yé(t)) +0 (V2>

- (1-a-enr) (o <(37/0@)>2+v6<$n<t>+u2$<t> )

Using (2.24) we deduce (2.21). The estimate (2.22) follows from (2.21) by
invoking the definitions of ~(¢) and n(t). O
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Lemma 2.9. Let r € (0,1). Then

B NS ! X
(2.27) py=poo + O (un(t)+vn(t)5(t) +y5(t)2+u5(t)2n(t)+v2n(t)5(t)) ’

YVt > v ",

K

where the constant implied by O-symbol is independent of v and t > v™F,
but it could depend on k.

Proof. The estimates (2.18b), (2.18d) and (2.20) imply that for ¢t > ="

we have
(Ggo)Q 1 I 1 B
on(t) T vsm® g - CGrw) = o)

uniformly in ¢ > v~". We conclude from (2.26) that

(-t - 220 @) = (- a2) - ;z@oo)z)l

229 (100 (T i * ) )

Since H, = Hoo + O(v™1) we deduce

—H,(1- G”)2+i23 (G,)*Gy=— Hoo(1 - Goo)2+;\2(Ggo)2Goo +0 <1>
Recalling that
—H,(1 - G2) + 32 (GL)2G,
YT ey - g

and —Hyo(1 — Goo)? + ;\—E(G{X))QGOO = O(671) we see that (2.27) follows
from (2.28). O
Consider the function

A(u) =1 —u?+wuarcsinu, |u| <1.
Observe that

dA
. ZZ-on <1
(2.29a) 7o = O0W), Vlul <1,
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A
(2.29b) Z— = arcsinu = O(u) as u — 0.
u

Now fix an exponent x € (0, i) We discuss separately two cases.

1. If v¥ < t < wv. Then in this range we have

1 1
3 oo:Otily v = oo+01,7:01a
5P ), pv=p (1) o (1)

and using (2.29b) and (2.27) we deduce

(230) Apy) = Apoo) + A'(poo) (pr — poo) + O (P = poo)”)
:A(poo)+0<;+:2).

2. v7" <t < v". The equality (2.20) shows that in this range we have

I S
o~ 5 oW

so that and (2.27) implies that

1
pv_poo:O<l/1—4k>'

Using (2.29a) we deduce

1 1 1
(2.31) Alpy) — Alpss) = O <V1—4k t s T 1/2_8”(5(15)) '

Set

Ay = CA(py) — CxApoo)s qv = </\2(V>> s oo = <1\2> :

Then using (2.25) we deduce that
6
Qv — Goo = gu‘l +O0(™?), g=qw (1+2071+0(17?)).

Then
(fy(t) —qu) - (foo(t) —qoo) =
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= QI/(eovoo(poo) -1+ Au) - QOo( e<>of4(poo) - 1)
= (QV - qOO)(GOOA(pOO) - 1) + qOOAl/'
To prove (1.2) we need to prove the following equality.

(232 (0= 1) [ (ExlDA(pe(6) ~ 1)
Joo /07”/ A, (t)dt =0o(1) as v — oo.

We can dispense easily of the first integral above since Coo(t)A(poo(t)) — 1
is absolutely integrable on [0,00) and g, — gs = O(v71).

The second integral requires a bit of work. More precisely, we will show
the following result.

Lemma 2.10. If0< k < %, then

(2.33) / A / A, (t)dt, / A, (t)dt = o(1) as v — oo.

Proof. We will discuss each of the three cases separately.

1. 0 <t < v~ ". The easiest way to prove that foyﬂi A, (t)dt — 0 is to show
that

CL()A(p,(t) =0(1), 0<t<vF

This follows using Lemma 2.7 and observing that the function A(u) is
bounded.

2. v <t < v". In this range we have

(R T SR
Using (2.22), (2.31) we deduce

€)= €x(0)+0 (k5 )+ 4l = 400 +0 (15 ).
Hence

A, = 0<M> and/ Ay (V115H>—0(1).
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3. v® <t < wrv. For these values of ¢ we have

n(t), — = 0(1), oM o).
Using (2.22) and (2.30) we deduce

1 1
Cu(t) = Cos(t) + O (m +—

)+ A0 =401 40 (4 13 )

vt 2

so that
Ay(t):O< ) / A () dt = o<1 1Og”>=o(1).
0

The fact that d defined as in (1.2) is positive follows by arguing exactly
as in [4, §3.2]. This completes the proof of Theorem 1.1.

Remark 2.11. The proof of Lemma 2.10 shows that for any ¢ > 0 we
have

(2.34) var(Z,) = Vi + O0(V°) as v — oo.

Numerical experiments suggest that do ~ 0.35. O

A. Some elementary estimates

Proof of Lemma 2.1. Consider the complex valued random process

imt

F(t) := mzmev, Zm = Cn, — -

The covariance function of this process is

R, (t) = B(F,()F,(0)) = —5 Y_m?ev .

Observe that ReJ, = ®,. Note that the spectral measure of the process

F, is
1 12
doy, = — g m2fm,
9% v
m=1
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where d;, denotes the Dirac measure on R concentrated at ty. We form the
covariance matrix of the Gaussian vector valued random variable

/

F,(0) R (0) Ru(t) R0 R (t)
F,(t) Ro(t) R, (0) —iR,(t) —iX,(0)
7,(0) | = RL(0) AR,(E) —RIO0)  —R, (1)
F.) R(t) ARL(0) —RI(t) fR’(O)

Observe that Re X(t) = Re E(¢). If we let

Uo
Yo
Uy
U1

e C*.

¥y
I

Then, as in [2, Eq. (10.6.1)] we have

, 1§
<Xyz,2>:ﬁzm2

m=1

2

imt Zm imt
<U0+U06 v >+7 <U1+Ule v )

Hence

imt

(A1) (X,Z,5)= 0©(u0+voe g

>+Z—m <u1+vle v ) =0,Ym =1,.
1%

We see that if the linear system (A.1) has a nontrivial solution Z, then the
complex 4 X 4 matrix

1 ¢ 1 ¢

1 ¢ 2 202 it
Ay(t) = 1 5_3 3 353 5 CZ 677

1 ¢t 4 4t

must be singular, i.e., det A, () = 0. We have

1 ¢ 1 ¢ 1 1 1 1
0 2 1 22_ 0 -1 1 2¢(—-1

det A, (t) = det 0 23_5 9 3§3_Z = (?det 0 52_1 2 352—1
0 ¢t—2 3 4 -2 0 ¢*~1 3 4¢°~1
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[¢—1 1 2¢—-1 (-1 1 ¢
= (Pdet [(2=1 2 3¢2—1| =(2det |21 2 2
(-1 3 4P -1 -1 3 3¢
(-1 1 1 c—1 1 0
:C3det (2—1 2 20| =Cdet |(2—1 2 2¢2-2
[¢P—1 3 3¢ ¢G-1 3 3¢°-3
(-1 1 0
=CPdet [(2—2¢+1 0 2¢3-2
¢ —3¢+2 0 3¢%-3
¢—1 1 0
=Pdet | (C—1* 0 2¢-1(¢+1)
3—-3¢+2 0 3¢3-3

¢—1 1 0
CS(Cl)th{ (C-1) 0 2(¢+1) ]
(C=12(C+1) 0 3(C-1(C+(+1)

11 0
=3¢ —1)3det { 10 2(¢+1) ]
C+1) 0 3(C+¢+1)
=P (3(C+ ¢+ -2 +2¢+1))
== - ¢~ ).
Since |¢| = 1, we that det A, (¢) = 0 if and only if ¢ € 27vZ. O

Proof of Lemma 2.5. Recall that 6 := .., f(6) := 2%, By (2.9) we
have
t’/‘-l—l

WDV,T‘ (t)

3 (v+1)t r v+1 i r+l1—j
Foy+ IV ()

Using (2.12) we deduce that

t’r‘—‘rl

1
+1
g1 Dvar () = = 1n() ‘ < 2rlit’
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r ‘ (l/—i'-l) €i9 r4+1—j 1
J J _
(A.2) -+74;£;t < (JTG)> ik

In the sequel we will use Landau’s symbol O. The various implied constants
will be independent of v. Throughout we assume 0 <t < 7v. For0 <0 < §
and 0 < j < r we have

e =14+ 0(0), Q§):1+O<i>,$n<@31ﬁ>:sm<;)+OWL

v

et (cos @ + isinb)

f(0) - sin 6 =1+00).
Hence

sin ((V;,l)t) 0 ) t
(A.3) We —sin <2> =0(0),

while for any 1 < j < r we have

(l/}-l) < 61:0 >T+1—j 1

vi \ f(0) g

Using (A.3) and (A.4) in (A.2) we deduce that

(A4)

tr—‘rl r+1

r—1
1 1 ) 1 .
WMHDWQD—VL@‘:O w+@+y)§w =0 ;zyﬂ
j=1 j=1

Hence

1 1 1 (1—¢+h)
— D, () - —— L) =0 =2 ).
AR () ghgrtl (*) ‘ 0 (Vﬁ" (1—1) )

Proof of Lemma 2.6. We have

sint, kel+2Z
cosT, k€27 '

1 t
R¥)(4) = itk%’/o T 2u(r)dr, u(r) = {
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Note that
1 1 [t

k+2
=—=—— T 4dT.
k+3 tht3 ),

R (0)]
The inequality (2.18a) now follows from the inequality |u(7)| < 1, V7.
For any positive integer r we denote by j, the r-th jet at 0 of a one-
variable function. We can rewrite (2.12) as follows:

Hence Re (;#1,(t)) =Im (€% - j, (e7™) ) and A+I.(t) =O0@™") t — oo.
This proves (2.18b).
The spectral measure do,, = # P m26m of the process F, con-

verges weakly as v — 0o to the measure doy = %X[O,l]tzdt, where xjo,1]
denotes the characteristic function of [0, 1]. Indeed, an argument identical
to the one used in the proof of Lemma 2.3 shows that for every continous
bounded function f : R — R we have

lim IRf(t)ala,,(t):/Rf(t)daoo.

V—r00

The complex valued stationary Gaussian process F,, on R with spectral

measure do has covariance function Ry, = % fol t2e™dt. Note that Re Ry, =

R. The results in [2, §10.6] show that the covariance matrix

/ /

Roo(0)  Reo(t) R (0) R (b)
R (0) iR () —Rp(0)  —R(t) | v
Reolt) aRo(0) =Ro(t)  =R(0)
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is nondegenerate. The equality det Re X (t) # 0, V¢ € R implies as in
Remark 2.2 that poo(t) # 0, |po(t)] < 1, Vt € R, where

_ (A = RE)Aa — Mo(RL)? _ REOG = RY) + (RL)* Reo
TN R T O Bk (R
This proves (2.18¢c). The equality (2.18d) follows from the Taylor expansion
of Reo. L]
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