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Abstract. In this paper we present a new axiomatic model of set theory called the
Extended Fraenkel Mostowski model. It is defined by replacing an axiom of the Fraenkel-
Mostowski model with a consequence of it; the other axioms of the Fraenkel-Mostowski
model are left unchanged in the new Extended Fraenkel-Mostowski model.

We use the theory of groups to define the sets both in the Extended Fraenkel-
Mostowski and in the Fraenkel-Mostowski approach. Several algebraic properties of
the sets in the Fraenkel-Mostowski model remain also valid in the Extended Fraenkel-
Mostowski model, even one axiom in the axiomatic description of the Extended Fraenkel-
Mostowski model is weaker than its homologue in the axiomatic description of the Fraenkel-
Mostowski model.
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1. Introduction

The Fraenkel-Mostowski permutation model of set theory (FM model)
was introduced in 1930s to prove the independence of the Axiom of Choice
(AC) from the other axioms of Zermelo-Fraenkel set theory with atoms
(ZFA). The axiom of choice says that, for each indexed family of nonempty
sets {Ai | i ∈ I}, there is a function f : I → ∪{Ai | i ∈ I} such that f(i) ∈ Ai

for each i ∈ I. If I is finite, then we can prove by induction that such a
function f exists. The statement “For each indexed family of nonempty sets
{Ai | i ∈ I and I is finite} there is a function f : I → ∪{Ai | i ∈ I} such
that f(i) ∈ Ai for each i ∈ I “ is only a consequence of other axioms in ZFA,
and it is not a form of the axiom of choice (see [7] for details). Informally,
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the axiom of choice says that given any collection of bins, each containing
at least one object, it is possible to make a selection of exactly one object
from each bin even though there are infinitely many bins and no “rule” of
how to choose the objects. According to the work of K.Gödel and P.Cohen,
the axiom of choice is logically independent of the other axioms of Zermelo-
Fraenkel set theory (ZF). Consequently, if ZF is consistent, then ZFC is
consistent, and ZF¬C is also consistent. So the decision whether or not it is
appropriate to make use of the axiom of choice in a proof cannot be made
by appealing to other axioms of set theory. The FM model is built using all
the axioms in ZFA model except the axiom of choice; it has also the special
property of finite support described in the definition of interchange function
(ZF¬C + finite support - see Definition 2 for the interchange function and
Definition 3 for the finite support). Additionally we have the axiom which
says that the set of atoms A is infinite. Clearly the finite support property
is in contradiction with the axiom of choice because, in our presentation,
we obtain that ℘(A) = ℘fin(A) ∪ ℘cofin(A) (where ℘(A) = {X|X ⊂ A},
℘fin(A) = {X|X ⊂ A, X finite}, ℘cofin(A) = {X|X ⊂ A, A \ X finite})
for the set A of atoms; this means we cannot build countable sets of atoms in
the sense of Zermelo-Fraenkel theory, and we cannot define the ℵ-cardinals.

In fact, the finite support property says that we can always find a fresh
name (atom) for each element x in an arbitrary set defined by Fraenkel-
Mostowski axioms, (i.e. we can always find an atom which is not in the
support of x). Since for α-equivalence classes of λ-terms x, the support of
x is represented by the free variables relatively to x, this model could be
considered as a more suitable framework for computability theory. As an
example how this could change the field, let consider the case of genera-
ting new names. New formalisms like π-calculus have fresh operators (e.g.,
operator new) which allow to generate a fresh name for a channel. The
π-calculus embodies the view that in principle most, if not all, distributed
computation may usefully be explained in terms of exchanges of names on
named communication channels. The axiomatic model which always allows
us to find a new name for a communication channel is, as we said before,
the Fraenkel-Mostowski model. Also, the Fraenkel-Mostowski model is the
axiomatic support for the construction of the nominal logic (see [4]). The
Fraenkel-Mostowski model appears naturally in computer science. In this
paper we give a mathematical presentation of this model and later, in some
future works, we’ll use these mathematical results in computer science and
give some new results in nominal logic and π-calculus.



3 AN EXTENSION OF A PERMUTATIVE MODEL OF SET THEORY 3

The finite support property of the FM model is very strong. We try to
study what happens if we replace this strong axiom with a weaker one. In
this article we generalize the FM model by giving a new set of axioms which
defines an Extended Fraenkel-Mostowski (EFM) model. We denote the infi-
nite set of atoms (in the ZFA approach) by A, and the group of permutations
of atoms (i.e the group of all bijections of A) by SA, both in the Fraenkel-
Mostowski and in the Extended Fraenkel-Mostowski approach. We prove
that some properties of SA defined in the EFM model are also properties
of SA defined in the FM model. We also define an extended interchange
function (Definition 4) without using the finite support property of FM
model; we use only the new axiom 11’ of the EFM model which is a con-
sequence of the axiom 11 of the FM model. We have decided to work with
EFM model instead of FM model because many properties of the inter-
change function (for example many properties of the domain of the inter-
change function, respectively SA) can be proved by using the new axiomatic
model and a more relaxed axiom which is axiom 11’ in the description of
the EFM model, instead of a very strong axiom which is axiom 11 in the
description of the FM model. So, for proving some important properties of
the domain of our interchange function (see for example Theorems 1 and
2) it is not necessary to assume that each element of an arbitrary FM set
has finite support, as it is done in the axiomatic construction of the FM
model (see axiom 11). These properties of SA are valid if we assume only
the axiom which says that each subset of the set A of atoms is either finite
or cofinite (i.e., axiom 11’). This axiom which gives the structure of A is
a direct consequence of the finite support property, as it is presented in
Example 2.

We describe a new set theory model in which the sets are pairs (X, ·),
where X is defined by ZFA¬C rules, and · is an extended interchange
function which is an action of the group of permutations of atoms on X.
Using some group theory results which can be proved without involving
the axiom of choice, we obtain some new results about the extended inter-
change function (when we assume the EFM axiomatic model to be valid)
which remain valid also for the interchange function (when we assume the
FM axiomatic model to be valid). The properties of the extended inter-
change function and interchange function obtained here could be success-
fully applied in nominal logic, since the permutative renamings (described
for example by Gabbay and Hofmann in [2]) are defined as a result of
applying the interchange function to a permutation and to an element in
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an FM set. The notion of renaming can be generalized in the EFM model
and some new results can be obtained.

2. The Extended Fraenkel-Mostowski model

We present the Fraenkel-Mostowski model with atoms and the new
Extended Fraenkel-Mostowski model by using the notions of transposition,
permutation, and substitution. Let A be an infinite set of atoms. A is cha-
racterized by the axiom “y ∈ x⇒ x /∈ A” which means that only non-atoms
can have elements.

Definition 1.

i) A transposition is a function (a b) : A → A with the following pro-
perty: (a b)(a) = b, (a b)(b) = a, and (a b)(n) = n for n ̸= a, b.

ii) A permutation of A is a bijection π from A to A.

iii) A substitution is a function {b|a} : A→ A with the property {b|a}(n) =
n if n ̸= a, and {b|a}(a) = b.

Let SA be the set of all permutations over A. SA is a group. Let SA
be the group of finitary permutations (i.e the group of permutations which
leave unchanged all but finitely many atoms). We prove that SA is the
set of all functions π generated by composing finitely many transpositions.
Indeed, let σ ∈ SA be a function which permutes only a finite number of
atoms {a1, ..., an} such that the atoms A \ {a1, ..., an} are left unchanged.
Formally, we can say that σ is a permutation of the set {a1, ..., an}, and so
σ can be expressed as a product of transpositions.

We assume that the set A of atoms is infinite (this is axiom 10 in the
characterization both of FM and EFM models). For S ⊂ A, we denote by
Fix(S) the set {π |π(a) = a for all a ∈ S}.

Definition 2. Let X be a set defined by the axioms of ZFA model
without axiom of choice. An interchange function over X is a function
· : SA × X → X defined inductively by π · a = π(a) for all atoms a ∈ A,
and by π · x = {π · y | y ∈ x} otherwise. Moreover, it satisfies the following
axiom: for each x ∈ X, there is a finite nonempty set S ⊂ A such that for
each π ∈ Fix(S) ∩ SA we have π · x = x.

An FM set is a pair (X, ·), where X is a set defined by ZFA model
without axiom of choice, and · : SA × X → X is an interchange function
over X. We simply use X whenever no confusion arises.
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The main distinction between ZFA and FM models is given by the fact
that the axiom of choice is not used in the FM model. Moreover, the set
A of atoms is infinite in FM, and for each element in an arbitrary FM set
there is a finite set supporting it (see Definition 3 for the notion of support).

Remark 1. Since SA is a group, the interchange function · : SA×X →
X is an action of the group SA on the set X because we have Id · x = x
and π · π′ · x = (π ◦ π′

) · x for all π, π′ ∈ SA. Therefore we can see an FM
set (X, ·) as a set provided by an action of SA on X.

Definition 3. Let X be an FM set. We say that S ⊂ A supports x
whenever for each π ∈ Fix(S) ∩ SA we have π · x = x, where Fix(S) =
{π |π(a) = a,∀a ∈ S}.

The interchange function properties always allow us to find a finite set
supporting x (in fact this assertion is an axiom, namely the axiom 11 in
the description of the FM model). We can generalize the notions defined in
Definition 2.

Definition 4. Let X be a set defined by the axioms of ZFA model
without axiom of choice. An extended interchange function over X is a
function · : SA ×X → X defined inductively by π · a = π(a) for all atoms
a ∈ A, and by π · x = {π · y | y ∈ x} otherwise. Moreover, each subset of A
is either finite or cofinite.

An EFM set is a pair (X, ·), where X is a set defined by ZFA model
without choice, and · : SA × X → X is an extended interchange function
on X. We simply use X whenever no confusion arises.

Remark 2. Since SA is a group, the extended interchange function
· : SA × X → X is an action of the group SA on the set X; we have
Id ·x = x and π · π′ ·x = (π ◦ π′

) ·x for all π, π′ ∈ SA. Therefore we can see
an EFM set (X, ·) like a set provided by an action of SA on X.

It is worth to note that we use the same notation · for both the inter-
change function and the extended interchange function. As it will be proved
later, an interchange function can be also seen as an extended interchange
function.

Example 1. The set A of atoms is both an FM set and an EFM set
with interchange function, respectively extended interchange function given
by (a b) · n = (a b)(n), and π · x constructed by induction.
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We present now axiomatic descriptions of both the Fraenkel-Mostowski
and Extended Fraenkel-Mostowski models. The axiomatic description of
the FM model is related to the nominal logic.

Definition 5. The following axioms give a complete characterization of
the Fraenkel-Mostowski model:

1. ∀x.(∃y.y ∈ x) ⇒ x /∈ A (only non-atoms can have elements)

2. ∀x, y.(x /∈ Aand y /∈ A and ∀z.(z ∈ x⇔ z ∈ y)) ⇒ x = y

(axiom of extensionality)

3. ∀x, y.∃z.z = {x, y} (axiom of pairing)

4. ∀x.∃y.y = {z | z ⊂ x} (axiom of powerset)

5. ∀x.∃y.y /∈ Aand y = {z | ∃w.(z ∈ w andw ∈ x)} (axiom of union)

6. ∀x.∃y.(y /∈ Aand y = {f(z) | z ∈ x}), for each functional formula f(z)

(axiom of replacement)

7. ∀x.∃y.(y /∈ Aand y = {z | z ∈ x and p(z)}), for each formula p(z)

(axiom of separation)

8. (∀x.(∀y ∈ x.p(y)) ⇒ p(x)) ⇒ ∀x.p(x) (induction principle)

9. ∃x.(∅ ∈ x and (∀y.y ∈ x⇒ y ∪ {y} ∈ x)) (axiom of infinite)

10. A isnot finite

11. ∀x.∃S ⊂ A.S is finite andS supports x (axiom of freshness)

this axiom describes the finite support property, and allows to say
that for each x there is a ∈ A such that a is fresh for x (i.e. a is not
in the support of x).

Thus we can build an FM model like a ZFA model with the set A of atoms
infinite and with the additional property of finite support.

Definition 6. The following axioms give a complete characterization of
the Extended Fraenkel-Mostowski model:

1. ∀x.(∃y.y ∈ x) ⇒ x /∈ A (only non-atoms can have elements)
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2. ∀x, y.(x /∈ Aand y /∈ A and ∀z.(z ∈ x⇔ z ∈ y)) ⇒ x = y

(axiom of extensionality)

3. ∀x, y.∃z.z = {x, y} (axiom of pairing)

4. ∀x.∃y.y = {z | z ⊂ x} (axiom of powerset)

5. ∀x.∃y.y /∈ Aand y = {z | ∃w.(z ∈ w andw ∈ x)} (axiom of union)

6. ∀x.∃y.(y /∈ Aand y = {f(z) | z ∈ x}), for each functional formula f(z)

(axiom of replacement)

7. ∀x.∃y.(y /∈ Aand y = {z | z ∈ x and p(z)}), for each formula p(z)

(axiom of separation)

8. (∀x.(∀y ∈ x.p(y)) ⇒ p(x)) ⇒ ∀x.p(x) (induction principle)

9. ∃x.(∅ ∈ x and (∀y.y ∈ x⇒ y ∪ {y} ∈ x)) (axiom of infinite)

10. A isnot finite

11’. Each subset of A is either finite or cofinite(axiom of structure for A)

Thus we can build an Extended Fraenkel-Mostowski (EFM) model like a
ZFA model with the set A of atoms infinite and an additional property that
each subset of A is either finite or cofinite.

Remark 3. Axiom 11’ of EFM model is a direct consequence of axiom
11 of FM model, and so the EFM model is a natural extension of the FM
model. An interchange function can be seen as an extended interchange
function, and an FM set can be seen as an EFM set. All these aspects
become clearer in Example 2.

Remark 4. There is no visible difference between the notions of in-
terchange function and extended interchange function, except there is a
restriction on the type. In the FM model the notions of interchange func-
tion and extended interchange function are identical. Looking on the set
of axioms 1-11 in the description of FM model and axioms 1-11’ in the
description of EFM model, the interchange function is an extended inter-
change function if we see the FM model as an EFM model (this is possible
because the axiom 11’ is a consequence of axiom 11, as we show in Example
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2). Also, the extended interchange function is an interchange function if
we work in the EFM model and we assume the supplementary axiom of
finite support. However we use different expressions for the same notion
only to emphasize that, when we use “interchange function” we work in the
FM approach (i.e., axioms 1-11), and when we use “extended interchange
function” we work in the EFM approach (i.e., axioms 1-11’).

Thus we have the following convention:

Remark 5. If we assume the set of axioms 1-11 to be valid, we say
that we work in the Fraenkel-Mostowski model of set theory ; if we assume
the set of axioms 1-11’ to be valid, we say that we work in the Extended
Fraenkel-Mostowski model of set theory.

Let G be a subgroup of SA. The function · : G × X → X defined
inductively by π · a = π(a) for all atoms a ∈ A, and by π · x = {π · y|y ∈ x}
otherwise, for all π ∈ G is a group action as it is proved in Remark 2. Such
a group action is induced by the extended interchange function; however
axiom 11’ is not restricted to G. When we talk about an action · : G×X →
X, we think only of the definition of · : G × X → X by induction as in
Definition 4 (we think only to the group theory meaning of · : G×X → X).
There is no restriction for axiom 11’ of the EFM model (respectively for
the finite support property of the FM model); it is the same for the entire
EFM model (respectively for the entire FM model). Formally, we say that
an action · : G × X → X is defined as an extended interchange function
(respectively as an interchange function) if · : G × X → X is defined by
induction as in Definition 4 (respectively as in Definition 2), and axiom 11’
(respectively the finite support property) is the same for the entire EFM
model (respectively for the entire FM model).

Definition 7. A G-renaming is an orbit of an (arbitrary) atom under
an action · : G×A→ A defined as an extended interchange function.

Remark 6. The notion of G-renaming comes from the nominal logic
[4]. Some properties of renamings defined as in [4] or [2] will be presented
in future work by using nominal techniques, groups theory and some results
of this paper.

We give now some results which finally allow us to say that the domain
of the interchange function and the domain of the extended interchange
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function have some similar properties. The first two of them provide some
algebraic properties of the domain of the extended interchange function.
Some general properties of permutation groups used for proving these results
can be found in [1].

Theorem 1. If we work in the extended Fraenkel-Mostowski model of
set theory, then SA is a torsion group.

Proof. We prove that SA is a torsion group, i.e., every element of SA
has finite order. Let SA be the subgroup of SA with the property that every
permutation in SA keeps fixed every point of A except a finite number of
them (this number could be 0). First we prove that the cycles of an arbitrary
σ ∈ SA are finite. Moreover, there is m ∈ N such that all but finite many
cycles of σ have length m. Let us suppose that σ has an infinite cycle. If we
assume that σ has at least two infinite cycles, then the set of points of one
of these cycles is infinite and coinfinite. However every subset of A is finite
or cofinite, and this means that every cycle of σ is finite. If we suppose now
that σ has only one infinite cycle, we obtain that σ ◦ σ is a permutation
with at least two infinite cycles, and so we get a contradiction. Now, for
every n ∈ N, the set of points in the cycles of σ which have length n is also
finite or cofinite. If there is n such that this set is cofinite, then the proof is
finished. If not, then there is an infinite number of different cycle lengths.
We can define a partition of the set of cycle lengths into two infinite sets X
and Y . Then the set of points from cycles with length in X is infinite and
coinfinite, and so we get a subset of A (the set of points from cycles with
length in X) which is neither finite nor cofinite. Again we contradict that
℘(A) = ℘fin(A) ∪ ℘cofin(A). Therefore for every σ ∈ SA except a finite
number of them, there is m ∈ N such that σm ∈ SA. Since SA is a torsion
group, we conclude that SA is a torsion group. �

All the cycles of σ are finite, and we have a finite number of cycle
lengths. According to Theorem 5.1.2 in [3], the order of σ is the least
common multiple of these cycle lengths.

Remark 7. Since the set of cycle lengths is a subset of N (built by
using the axiom of infinity), we could define a partition of the set of cycle
lengths into two infinite sets X and Y . The construction of N is not in
contradiction with the axioms of the EFM model and of the FM model.
However, as we can see in the next section, the set A of atoms cannot be
partitioned into two infinite subsets A1 and A2. This is the reason why the
axiom of choice fails in both EFM and FM approaches.
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Theorem 2. If we work in the extended Fraenkel-Mostowski model of
set theory, then each subgroup of SA which is finitely generated is also finite.

Proof. We prove that, if G ≤ SA is a finitely generated group, then G
is finite. Let σ1, σ2, . . . , σm ∈ SA and G =< σ1, . . . , σm >. A G-renaming
is the orbit of an element α ∈ A under the canonical action of G on A
defined as in Definition 4. We prove that there is an r depending on (m)
such that all but finitely many G-renamings (under the canonical action of
renaming on atoms defined by the extended interchange function) have size
r. Let us assume that there is an infinite G-renaming under the canonical
action of G on A defined by (σ, α) 7→ σ(α). As a G-renaming is the orbit
of an element α ∈ A, we claim that this orbit contains a countable infinite
subset. We define a word with k letters in σ1, σ2, . . . , σm to be a finite
composition of k permutations and inverses from the set {σ1, σ2, . . . , σm}.
This terminology comes from the theory of free groups; however word in
σ1, σ2, . . . , σm in our approach is not an element of the free group on the
generators σ1, σ2, . . . , σm. Of course the set of words with k letters is finite
for each k. We consider an infinite sequence of words in σ1, σ2, . . . , σm. If
there is a ∈ A with infinite orbit, we can define the image {a1, a2, . . . , am}
of a under the words of the sequence by a1 = σ1(a), . . . , am = σm(a). Let
am+1 = σm+1(a), where σm+1 is the first word in the sequence such that
σm+1(a) /∈ {a1, a2, ..., am}. Such a σm+1 exists because we suppose that the
obit of a is infinite. Indeed we can define a method of covering the sequence
of words in σ1, σ2, . . . , σm in the following way: first we cover the words with
two letters (in an alphabetically ordered way that is in the same way as we
“read a dictionary”, since the set of letters is finite and hence well ordered;
note that each finite set can be well-ordered and for proving this we do not
need the axiom of choice), secondly we cover the words with three letters
and so on. We pick up the first word we find with the requested property
that the image of a under it is not a member of {a1, a2, . . . , am}. We present
a constructive method of picking up the first element in the sequence with
the requested property. The method of covering the sequence presented
before could induce an well-order relation on that sequence if we consider
only the distinct words in the sequence (note that if we form all the possible
words with the letters σ1, σ2, . . . , σm we could have words in σ1, σ2, . . . , σm
with different number of letters but which are equal); this order is called
“lexicographic order” . With am+1 already found we repeat the procedure
described before and we find am+2 and so on. Thus, we obtain a countable
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subset of A. This contradicts the fact that all subsets of A are finite or
cofinite. In fact, if there is a countable subset B of A, then A \B is finite.
It follows that A is countable, i.e. there is a bijection from N to A, and so
we get a contradiction (see Remark 9). If a finite number (greater than 1) of
G-renamings sizes occur infinitely, then we contradict the special property
of A that ℘(A) = ℘fin(A) ∪ ℘cofin(A). Indeed, let us suppose we have an
infinite number of G-renamings with size k and an infinite number of G-
renamings with size l. Since the G-renamings which are different are also
disjoint, we conclude that elements in the G-renamings with size k form a
set which is both infinite and coinfinite. If the G-renamings are arbitrarily
large, then we contradict again the structure of A. The proof of this fact is
similar to that of Theorem 1: we use a partition of the G-renamings sizes
into two infinite sets X and Y , and see that the set of elements with G-
renamings sizes in X is infinite and coinfinite. We can conclude that all but
finitely many G-renamings have size r. Let us suppose that G is generated
by permutations σ1, σ2, . . . , σm. There are infinitely many G-renamings,
and all but finitely many of these G-renamings have the size r (otherwise, if
we assume that there are only a finite number of G-renamings, because each
G-renaming is finite, it follows that A is finite, i.e. a contradiction). Let
us suppose that G is infinite. We define an equivalence relation on the set
of G-renamings saying that two G-renamings are equivalent iff the actions
of G on them are isomorphic. Since G is finitely generated, it follows that
there is only a finite number of homomorphisms from G to Sr, and so there
is only a finite number of equivalence classes (we can identify an action
with its associated representation by permutations). It follows that one
equivalence class (denoted by O) is infinite; otherwise, if all the equivalence
classes are finite, because there are only finitely many equivalence classes,
then there is only a finite number of G-renamings, i.e. a contradiction.

Let X0 be a G-renaming which is a representative of O. The action of G
on X0 can be seen as an homomorphism f from G to Sr. In fact this action
is seen like the associated representation by permutations ψ : G → S(X0)
defined by ψ(σ)(x) = σ(x). Since |X0| = r, there is an isomorphism φ :
S(X0) → Sr, and f = φ ◦ψ. If σ ∈ Ker(f), then σ fixes all the elements in
X0, and so σ fixes all the elements whose G-renamings are in O. Definition
4.19 of [6] is useful to see how isomorphic actions look like (actually several
results used here can be found in [6]). The number of elements of A fixed by
σ is infinite, and because ℘(A) = ℘fin(A)∪℘cofin(A), the number of unfixed
elements of A by σ is finite. Therefore, Ker(f) is formed by permutations



12 ANDREI ALEXANDRU and GABRIEL CIOBANU 12

which keeps fixed all but finitely many atoms.

We also have that SA is locally finite. Indeed let π1, ..., πk ∈ SA such that
π1 permutes the atoms from a finite subset of A named U1 ,...,πk permutes
the atoms from a finite subset of A named Uk. Let U = U1 ∪ ...∪Uk. Then
each of π1, ..., πk is a permutation of U . If u is the finite cardinal of U ,
then we obtain that [{π1, ..., πk}] ≤ S(U) ∼= Su and of course [{π1, ..., πk}]
is finite.

Now, since Ker(f) ≤ SA and SA is locally finite, we have that Ker(f) is
locally finite (see [6]). There is also an isomorphism from G/Ker(f) to Sr;
the proof is similar to the proof of the fundamental isomorphism theorem
for groups, and it does not use the axiom of choice. Since Ker(f) is locally
finite and G/Ker(f) is finite, it follows that G is also locally finite (this
result is proved by O.J.Schmidt for the general case: if for a group H there
is K ▹ H such that both K and H/K are locally finite, then H is locally
finite). Moreover, if H/K is finite, the axiom of choice is not used (see [6]).
Since G is finitely generated, we have that G is finite, and this completes
the proof. �

Remark 8. We can also use a result saying that for a finitely generated
group G, every subgroup of finite index in G is finitely generated; the proof
does not use the axiom of choice (see [6]). Using the notations of the
previous theorem, we get that Ker(f) is a subgroup of finite index in G.
ThenKer(f) is finitely generated. SinceKer(f) is also a locally finite group
(it is a subgroup of the locally finite group SA), then Ker(f) is finite. Since
Ker(f) and G/Ker(f) are both finite, it follows that G is finite; the proof
is similar with the proof of Lagrange theorem. According to Remark 12,
we can choose a system of representatives for the set of left cosets modulo
Ker(f); moreover, G/Ker(f) is finite. It is easy to proceed in this way for
the last part of the proof of Theorem 2.

A general result in ZF group theory says that a torsion group which is in
the same time soluble and finitely generated is also a finite group. Another
result says that a torsion group which is in the same time nilpotent and
finitely generated is also a finite group (see [5]). The result presented in
Theorem 2 is stronger; we do not need neither solubility nor nilpotency.

Remark 9. ℵ-cardinals are not defined in the EFM model (respectively
in the FM model). When we say a “countable set” in the EFM model
(respectively in the FM model), we intuitively think of a countable set
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defined like in Zermelo-Fraenkel model. Such a countable set is defined
by axiom of infinity, axiom of separation and axiom of extensionality (i.e.,
a set of the form ∅, {∅}, {∅, {∅}},...); see [7] for details. We do not define
effectively a countable set, and talking about such a countable set we think
of the construction of N in Zermelo-Fraenkel model. For the existence of
a numbering sequence 1, 2 , . . . , we use the axiom of infinity, and not
the axiom of choice. A countable set (like N) can have both infinite and
coinfinite subsets; for example, 2N. However A cannot be in a bijection
with N.

3. Connections between the Fraenkel-Mostowski model and
the Extended Fraenkel-Mostowski model

Since in the axiomatic description of the EFM model we assumed that
℘(A) = ℘fin(A) ∪ ℘cofin(A), Theorems 1 and 2 are not valid in a general
theory of urelements in ZFA model. In fact, we can prove Theorems 1 and
2 only in the EFM and FM settings.

In this section we prove that some algebraic properties of the domain of
the extended interchange function are also properties of the domain of the
interchange function.

Definition 8. Let X be an FM set. We say that S ⊂ A supports x
whenever for each π ∈ SA which keeps each s ∈ S unchanged, we obtain an
invariant renaming of x; i.e., for each π ∈ Fix(S) ∩ SA we have π · x = x,
where Fix(S) = {π |π(a) = a,∀a ∈ S}.

The interchange function properties always allow to find a finite set
supporting x.

Theorem 3. Let X be a FM set. For each x ∈ X there is a unique
minimal set which supports x; this set is called the support of x, and it is
denoted by S(x).

Proof. We define S(x) = ∩{S ⊂ A |S finite and S supports x}. We
have to prove that if S1and S2 supports x, then S1∩S2 supports x. Indeed,
let π be a permutation from Fix(S1 ∩ S2) ∩ SA. We have to prove that
π · x = x. Since each permutation π of this type is generated by composing
finitely many transpositions (π ∈ SA), we have to prove the finite support
property only for transpositions. This means that for each a, b /∈ S1 ∩ S2
we have (a b) · x = x. The cases a, b /∈ S1 and a, b /∈ S2 are obvious because
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S1 and S2 support x, and by Definition 2 we have (a b) · x = x. Now let
a /∈ S1 and b /∈ S2. Since S1 ∪ S2 is finite and A is infinite, we can find
c ∈ A \ (S1 ∪S2) and a ̸= c ̸= b. Since a, c /∈ S1 and S1 supports x, we have
(c a) · x = x. Since b, c /∈ S2 and S2 supports x, we have (c b) · x = x. It
follows that (a b) · x = (a b) · (c b) · x = ((a b) ◦ (c b)) · x = ((c b) ◦ (a c)) · x =
(c b) · (a c) · x = x. The case when a /∈ S2 and b /∈ S1 is similar. The proof
is complete because we know that there is at least one finite set supporting
x (by axiom 11), and so the support S(x) is well defined. �

Example 2. We present the supports for various subsets of A:

1. If B ⊂ A and B is finite, then S(B) = B.

2. If C ⊂ A and C is cofinite, then S(C) = A \ C.

3. If D ⊂ A is not finite or cofinite, then a finite set supporting A
cannot be defined. Indeed, let us suppose that S supports D (this
means that for each π ∈ Fix(S) ∩ SA we have π(D) = D). If D is
of the form {a, c, e, ...}, then at least {a, c, e, ...} or {b, d, f, ...} (which
is CD = A \D) must be fixed by each π. This means that S cannot
be finite. Thus we get ℘(A) = ℘fin(A)∪ ℘cofin(A), and so we cannot
accept in our model subsets of A which are in the same time infinite
and coinfinite because of the “finite support“ property. This property
of A is characteristic for both the FM and EFM models.

Note 1. In the previous example, {a, c, e, ...} is only a convention of
describing D. We do not have any choice of atoms in the construction
of D, like a is the first atom of A, c is the third atom of A, etc. We
use the form {a, c, e, ...} for D because, by intuition, it is easy to see who
is CD in this case. However the atoms composing D are arbitrarily pre-
sented in the structure of D, with no preliminary choice; the single con-
dition is that both D and CD are infinite. For example D can also be of
form {a, c, u, e, g, i, gh, ar1, ...}, where each of a, c, u, e, g, i, gh, ar1, ... are ar-
bitrary atoms and both {a, c, u, e, g, i, gh, ar1, ...} and its complement are
infinite.

Remark 10. Analyzing the structure of A (in both FM and EFM
models we have ℘(A) = ℘fin(A)∪ ℘cofin(A)), we can prove that the axiom
of choice fails in both FM and EFM models. Indeed, if we assume that the
axiom of choice is true, then for the family of disjoint sets {a, b} , {c, d} ,
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. . . , we should be able to find a set M which contains exactly one element
from each of these sets {a, b}, {c, d}, . . . . HoweverM ⊂ A should be infinite
and coinfinite at the same time, and this contradicts the structure of A.

We present some algebraic connections between the domain of the ex-
tended interchange function the domain of the interchange function.

Theorem 4. The properties of SA described in Theorem 1 and Theorem
2 remain also valid in the Fraenkel-Mostowski axiomatic model of set theory.

Proof. By Example 2 we see that the finite support property implies
that each subset of A is either finite or cofinite, and these results presented
initially for the EFM model remains also valid for the FM model, since in
the proofs of Theorem 1 and Theorem 2 we use only the specific structure
of A (i.e axiom 11’), and not the finite support property. �

Remark 11. It is not trivial to adapt for the FM model the results
presented in the previous sections. We could be tempted to say that the
support of an arbitrary permutation of A is exactly the set of atoms it
moves, because such a definition is given in classical permutation group
theory. In this case, because of the finite support property, we should get
that SA = SA and many of the results presented in Section 2 could become
trivial. According to Definition 3, we cannot say that the support of an
arbitrary bijection of A is the set of atoms it moves. Indeed, let σ ∈ SA and
let S be the set of atoms moved by σ. The canonical action of SA on SA is
given by the composition of permutations, which is the internal operation in
SA. Supposing that SA can be organized as a FM set, we prove that S does
not support σ, and so S is not the support of σ according to Definition 3.
Indeed, let π ∈ SA such that π ∈ Fix(S), i.e. π ∈ SA such that π(a) = a for
all atoms a with the property that σ(a) ̸= a. If we suppose that S supports
σ then π ◦ σ = σ. Let b be an atom such that σ(b) = b, π(b) = c, and
π(a) = a for all atoms a with the property that σ(a) ̸= a, where a, b, c are
distinct atoms. Then π(σ(b)) = π(b) = c ̸= σ(b) and π ◦ σ ̸= σ. Therefore
S does not support σ.

Even if the axiom of choice fails in the FM and EFM approach, a weaker
form of the axiom of choice (where the choice is from finite families) is valid.
This remark has been used implicitly in this paper; for example, in the proof
of Theorem 2.
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Remark 12. The axiom of choice says that for each family F of non-
empty disjoint sets, we can find a system of representatives (which is a set
that contains exactly one element from each set in F). If F is a finite
family of disjoint nonempty sets, this statement is a consequence of Axioms
1-9 (and not a form of the axiom of choice). Indeed, if F contains only
one nonempty set U , then we can find an element x0 ∈ U (because U is
nonempty). By the axiom of pairing we obtain the set {x0} which is a set
of representatives for F . By the induction principle we can obtain a set of
representatives for each finite family F of disjoint nonempty sets (see [7] for
details).

An important goal of describing the EFM model is to prove that some
properties of SA which are valid in the FM approach (for example Theo-
rems 1 and 2) remain also valid if we consider a weaker axiom 11’ in the
description of EFM model instead of the axiom 11 in the description of FM
model and work with the set of axioms 1-11’. As we have already explained,
for the proof of some important properties of SA we do not necessarily need
to assume that for each element in an FM set there is a finite nonempty
set supporting it (according to Definition 3) as we did in the axiomatic
description of the FM model (by axiom 11). Instead of using axiom 11 to
prove some properties of SA (e.g., Theorems 1 and 2), we can use only a
consequence of it (axiom 11’) which says that each subset of A is either
finite or cofinite. This section shows that the domain of the extended inter-
change function defined in EFM approach (Definition 4) and the domain of
the interchange function defined in FM approach (Definition 2) have similar
properties. Thus we can work in a model where, instead of an axiom which
forces each element to have finite support (axiom 11 of the FM model), we
use an axiom only for the structure of A (axiom 11’ of the EFM model),
and finally obtain similar properties of SA.

We do not say that the EFM model is better than the FM model. The
finite support property has important benefits (some of them are presented
in [4]). However, we emphasize that we can relax the set of axioms in the
description of the FM model and the effect is that, for the group of permu-
tations of atoms, we obtain similar properties in both FM and EFM models.
A future work will be devoted to prove that the permutative renamings (de-
fined in [2] and [4]) have similar properties both in FM and EFM approach.
In this paper we give the mathematical results that can be used then in a
computer science paper where the permutative renamings are described in
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an axiomatic model without the finite support property.

4. Conclusion and further work

FM sets are described by the ZFA axioms together with the group action
· which is called interchange function. Since the ZFA model has already
been investigated for a long time, the important new properties of the FM
sets are related to the properties of the interchange function.

In this article we give a new axiomatic model of set theory, respectively
the EFM model, which is a natural extension extension of the FM model in
the sense that one of the FM axioms was replaced by one of its consequences.
In fact we describe the EFM model by replacing the finite support property
of the FM model with an axiom which says only that the set of atoms has
a special structure: each subset of atoms is either finite or cofinite. We
naturally extend the notion of interchange function, and get the notion of
extended interchange function. Several properties of the extended inter-
change function are presented, and finally we make a comparison between
the FM and EFM models by providing some algebraic connections between
the interchange function and the extended interchange function. The main
idea is to prove that some algebraic properties of the domain of the inter-
change function remain valid even we replace a strong axiom (namely axiom
11 of the FM model) with a weaker consequence of it (namely the axiom
11’ of the EFM model). Theorem 1, Theorem 2 and Theorem 4 emphasize
this idea.

Since the FM model is often used in the computer science (nominal logic
and semantics), in a future work we’ll try to analyze how some classical
results are affected if we use the axiomatic EFM approach instead of the
FM approach.
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ROMANIA

gabriel@info.uaic.ro


