Skip to main content
Log in

Solutions to the fractional diffusion-wave equation in a wedge

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The diffusion-wave equation with the Caputo derivative of the order 0 < α ≤ 2 is considered in polar coordinates in a domain 0 ≤ r < ∞, 0 < φ < φ 0 under Dirichlet and Neumann boundary conditions. The Laplace integral transform with respect to time, the finite sin- and cos-Fourier transforms with respect to the angular coordinate, and the Hankel transform with respect to the radial coordinate are used. The numerical results are illustrated graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.M. Budak, A.A. Samarskii, A.N. Tikhonov, A Collection of Problems in Mathematical Physics. Pergamon Press, Oxford, 1964.

    Google Scholar 

  2. B. Datsko, V. Gafiychuk, Complex nonlinear dynamics in subdiffusive activator-inhibitor systems. Commun. Nonlinear Sci. Numer. Simulat. 17 (2012) 1673–1680.

    Article  MATH  MathSciNet  Google Scholar 

  3. G. Doetsch, Anleitung zum praktischen Gebrauch der Laplace-Transformation und der Z-Transformation. Springer, München, 1967.

    MATH  Google Scholar 

  4. V. Gafiychuk, B. Datsko, Mathematical modeling of different types of instabilities in time fractional reaction-diffusion systems. Comput. Math. Appl. 59 (2010), 1101–1107.

    Article  MATH  MathSciNet  Google Scholar 

  5. A.S. Galitsyn, A.N. Zhukovsky, Integral Transforms and Special Functions in Heat Conduction Problems. Naukova Dumka, Kiev, 1976 (In Russian).

    Google Scholar 

  6. R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order. In: Fractals and Fractional Calculus in Continuum Mechanics, Springer, New York (1997), 223–276.

    Google Scholar 

  7. Y. Fujita, Integrodifferential equation which interpolates the heat equation and the wave equation. Osaka J. Math. 27 (1990), 309–321.

    MATH  MathSciNet  Google Scholar 

  8. X.Y. Jiang, M.Y. Xu, The time fractional heat conduction equation in the general orthogonal curvilinear coordinate and the cylindrical coordinate systems. Physica A 389 (2010), 3368–3374.

    Article  MathSciNet  Google Scholar 

  9. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam, 2006.

    MATH  Google Scholar 

  10. F. Mainardi, The fundamental solutions for the fractional diffusionwave equation. Appl. Math. Lett. 9, No 6 (1996), 23–28.

    Article  MATH  MathSciNet  Google Scholar 

  11. F. Mainardi, Fractional relaxation-oscillation and fractional diffusionwave phenomena. Chaos, Solitons Fractals 7 (1996), 1461–1477.

    Article  MATH  MathSciNet  Google Scholar 

  12. F. Mainardi, Applications of fractional calculus in mechanics. In: Transform Methods and Special Functions (Proc. Internat. Workshop, Varna, 1996), Bulgarian Academy of Sciences, Sofia (1998), 309–334.

    Google Scholar 

  13. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000), 1–77.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Metzler, J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen. 37 (2004), R161–R208.

    Article  MATH  MathSciNet  Google Scholar 

  15. B. N. Narahari Achar, J.W. Hanneken, Fractional radial diffusion in a cylinder. J. Mol. Liq. 114 (2004), 147–151.

    Google Scholar 

  16. N. Özdemir,, D. Karadeniz, Fractional diffusion-wave problem in cylindrical coordinates. Phys. Lett. A 372 (2008), 5968–5972.

    Article  MATH  MathSciNet  Google Scholar 

  17. N. Özdemir,, D. Karadeniz, B.B. Iskender, Fractional optimal control problem of a distributed system in cylindrical coordinates. Phys. Lett. A 373 (2009), 221–226.

    Article  MATH  MathSciNet  Google Scholar 

  18. N. Özdemir,, O.P. Agrawal, D. Karadeniz, B.B. Iskender, Fractional optimal control problem of an axis-symmetric diffusion-wave propagation. Phys. Scr. T 136 (2009), # 014024.

    Google Scholar 

  19. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego, 1999.

    MATH  Google Scholar 

  20. Y.Z. Povstenko, Fractional heat conduction equation and associated thermal stress. J. Thermal Stresses 28 (2005), 83–102.

    Article  MathSciNet  Google Scholar 

  21. Y.Z. Povstenko, Two-dimensional axisymmetric stresses exerted by instantaneous pulses and sources of diffusion in an infinite space in a case of time-fractional diffusion equation. Int. J. Solids Structures 44 (2007), 2324–2348.

    Article  MATH  MathSciNet  Google Scholar 

  22. Y.Z. Povstenko, Fractional radial diffusion in a cylinder. J. Mol. Liq. 137 (2008), 46–50.

    Article  Google Scholar 

  23. Y. Povstenko, Non-axisymmetric solutions to time-fractional diffusion-wave equation in an infinite cylinder. Fract. Calc. Appl. Anal. 14 (2011), 418–435; DOI: 10.2478/s13540-011-0026-4; http://link.springer.com/article/10.2478/s13540-011-0026-4.

    MATH  MathSciNet  Google Scholar 

  24. Y. Povstenko, Solutions to time-fractional diffusion-wave equation in cylindrical coordinates. Adv. Difference Eqs 2011 (2011), Article ID 930297, 14 pp.

  25. Y. Povstenko, Time-fractional radial heat conduction in a cylinder and associated thermal stresses. Arch. Appl. Mech. 82 (2012), 345–362.

    Article  Google Scholar 

  26. Y.Z. Povstenko, Fractional heat conduction in infinite one-dimensional composite medium. J. Thermal Stresses 36 (2013), 351–363.

    Article  Google Scholar 

  27. A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series. Special Functions. Nauka, Moscow, 1983 (In Russian).

    MATH  Google Scholar 

  28. H. Qi, J. Liu, Time-fractional radial diffusion in hollow geometries. Meccanica 45 (2010), 577–583.

    Article  MATH  MathSciNet  Google Scholar 

  29. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, Amsterdam, 1993.

    MATH  Google Scholar 

  30. W.R. Schneider, W. Wyss, Fractional diffusion and wave equations. J. Math. Phys. 30 (1989), 134–144.

    Article  MATH  MathSciNet  Google Scholar 

  31. I.N. Sneddon, The Use of Integral Transforms. McGraw-Hill, New York, 1972.

    MATH  Google Scholar 

  32. V.V. Uchaikin, Fractional Derivatives for Physicists and Engineers. Springer, Berlin, 2013.

    Book  MATH  Google Scholar 

  33. W. Wyss, The fractional diffusion equation. J. Math. Phys. 27 (1986), 2782–2785.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy Povstenko.

About this article

Cite this article

Povstenko, Y. Solutions to the fractional diffusion-wave equation in a wedge. fcaa 17, 122–135 (2014). https://doi.org/10.2478/s13540-014-0158-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-014-0158-4

MSC 2010

Key Words and Phrases

Navigation