Skip to main content
Log in

Liouville and Riemann-Liouville fractional derivatives via contour integrals

  • Survey Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We study the fractional integral (fI) and fractional derivative (fD), attained by the analytic continuation (AC) of Liouville’s fI (LfI) and Riemann-Liouville fI (RLfI). On the AC of RLfI, we give a detailed summary of Lavoie et al’s review. The ACs of RLfI are expressed by means of contour integrals. Two of them use the Cauchy contour, and one is using the Pochhammer contour. In this case, the latter is AC of all the others for the functions treated. For the AC of LfI, one can find studies in Campos’ papers and in Nishimoto’s books, where the AC is using only the Cauchy contour. Here we present also an AC using a modified Pochhammer’s contour. In this case, we see that any of these two ACs is not the AC of the other for all the functions treated. This fact leads to difficulties, if a careful study taking care of the domains of existence of each AC is not adopted. By taking account of this fact, we resolve the difficulties which occur in Nishimoto’s formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.L. Butzer and R.J. Nessel, Fourier Analysis and Application, Vol. I: One-Dimensional Theory. Birkhäuser Verlag, Basel (1971).

    Google Scholar 

  2. L.M.B.C. Campos, On a Concept of Derivative of Complex Order with Applications to Special Functions. IMA J. Appl. Math. 33 (1984), 109–133.

    Article  MathSciNet  MATH  Google Scholar 

  3. L.M.B.C. Campos, Rules of derivation with complex order for analytic and branched functions. Portugaliae Mathematica 43 (1986), 347–376.

    MathSciNet  MATH  Google Scholar 

  4. A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006).

    MATH  Google Scholar 

  5. J.L. Lavoie, R. Tremblay and T.J. Osler, Fundamental properties of fractional derivatives via Pochhammer integrals. In: Fractional Calculus and its Applications (Ed. B. Ross), Lecture Notes in Mathematics 457 (1975), 327–356.

    Article  MathSciNet  Google Scholar 

  6. J.L. Lavoie, T.J. Osler and R. Tremblay, Fractional derivatives and special functions. SIAM Review 18 (1976), 240–268.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Liouville, Mémoire sur quelque Question de Géométrie et de Mécanique, et sur un genre de calcul pour résoudre ces questions. J. de L’Ecole Polyt. 13(1832), 1–69.

  8. J. Lützen, Joseph Liouville 1809–1882: Master of Pure and Applied Mathematics. Springer-Verlag, New York (1990).

    MATH  Google Scholar 

  9. K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley, New York (1993).

    MATH  Google Scholar 

  10. T. Morita and K. Sato, Solution of fractional differential equation in terms of distribution theory, Interdiscipl. Inform. Sc. 12 (2006), 71–83.

    MathSciNet  MATH  Google Scholar 

  11. K. Nishimoto, Fractional Calculus, I. Descartes Press, Koriyama (1989).

    Google Scholar 

  12. K. Nishimoto, An Essence of Nishimoto’s Fractional Calculus. Descartes Press, Koriyama (1991).

    MATH  Google Scholar 

  13. M.D. Ortigueira, Fractional Calculus for Scientists and Engineers. Springer, Dordrecht, Heidelberg etc. (2011); DOI: 10.1007/978-94-007-0747-7.

    Book  MATH  Google Scholar 

  14. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).

    MATH  Google Scholar 

  15. A.M. Robert, Nonstandard Analysis. Dover, Mineola (2003).

    MATH  Google Scholar 

  16. S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach Sc. Publ., Amsterdam (1993).

    MATH  Google Scholar 

  17. K. Sato, Fractional calculus (Definitions and developments) — Connection with fractals (in Japanese). In: The 11th Symposium on History of Mathematics, Reports of Institute of Mathematics and Computer Sciences, Tsuda College 22 (2001), 22–51.

    Google Scholar 

  18. H. Weyl, In: Hermann Weyl Gesammelte Abhandlung, Band I. Springer-Verlag, Berlin (1968), 663–669.

    Google Scholar 

  19. E.T. Whittaker and G.N. Watson, A Course of Modern Analysis. Cambridge Univ. Press, Cambridge (1935).

    Google Scholar 

  20. D.V. Widder, The Laplace Transform. Princeton Univ. Press, Princeton (1941).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Morita.

About this article

Cite this article

Morita, T., Sato, Ki. Liouville and Riemann-Liouville fractional derivatives via contour integrals. fcaa 16, 630–653 (2013). https://doi.org/10.2478/s13540-013-0040-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-013-0040-9

MSC 2010

Key Words and Phrases

Navigation