Skip to main content
Log in

Numerical studies for the variable-order nonlinear fractional wave equation

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, the explicit finite difference method (FDM) is used to study the variable order nonlinear fractional wave equation. The fractional derivative is described in the Riesz sense. Special attention is given to study the stability analysis and the convergence of the proposed method. Numerical test examples are presented to show the efficiency of the proposed numerical scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Chen, F. Liu, K. Burrage, Numerical anlysis for a variable-order nonlinear cable equation. J. Comput. Appl. Math. 236 (2011), 209–224.

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Chen, F. Liu, I. Turner, V. Anh, Numerical methods with fourth-order spatial accuracy for variable-order nonlinear Stokes’ first problem for a heated generalized second grade fluid. Computer and Mathematics with Application 62 (2011), 971–986.

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Chen, F. Liu, I. Turner, V. Anh, Numerical simulation for the variable-order Galilei invariant advection diffusion equation with a nonlinear source trem. Appl. Math. Comput. 217 (2011), 5729–5742.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Chen, F. Liu, V. Anh, I. Turner, Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Scientific Computing 32, No 4 (2010), 1740–1760.

    Article  MathSciNet  MATH  Google Scholar 

  5. C.F.M. Coimbra, C.M. Soon, M.H. Kobayashi, The variable viscoelasticity operator. Annalen der Physik 14, No 6 (2005), 378–389.

    Article  MATH  Google Scholar 

  6. D. Ingman, J. Suzdalnitsky, M. Zeifman, Constitutive dynamic-order model for nonlinear contact phenomena. Journal of Applied Mechanics 67, No 2 (2000), 383–390.

    Article  MATH  Google Scholar 

  7. D. Ingman, J. Suzdalnitsky, Control of damping oscillations by fractional differential operator with time-dependent order. Computer Methods in Applied Mechanics and Engineering 193 (2004), 5585–5595.

    Article  MathSciNet  MATH  Google Scholar 

  8. M.M. Khader, On the numerical solutions for the fractional diffusion equation. Commun. Nonlinear Sci. and Numer. Simul. 16 (2011), 2535–2542.

    Article  MathSciNet  MATH  Google Scholar 

  9. M.M. Khader, Introducing an efficient modification of the variational iteration method by using Chebyshev polynomials. Application and Applied Mathematics: An International Journal 7, No 1 (2012), 283–299.

    MATH  Google Scholar 

  10. M.M. Khader, A.S. Hendy, The approximate and exact solutions of the fractional-order delay differential equations using Legendre pseudospectral method. Int. J. of Pure and Appl. Math. 74, No 3 (2012), 287–297.

    MATH  Google Scholar 

  11. R. Lin, F. Liu, V. Anh, I. Turner, Stability and convergence of a new explicit FDM for the variable-order nonlinear fractional diffusion equation. Applied Mathematics and Computation 212 (2009), 435–445.

    Article  MathSciNet  MATH  Google Scholar 

  12. C.F. Lorenzo, T.T. Hartley, Variable order and distributed order fractional operators. Nonlinear Dynamics 29 (2002), 57–98.

    Article  MathSciNet  MATH  Google Scholar 

  13. C.F. Lorenzo, T.T. Hartley, Initialization, conceptualization and application in the generalized fractional calculus. NASA / TP 20 (1999), 208–218.

    Google Scholar 

  14. M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection dispersion flow equations. J. Comput. Appl. Math. 172, No 1 (2004), 65–77.

    Article  MathSciNet  MATH  Google Scholar 

  15. I. Podlubny, Fractional Differential Equations. Academic Press, N. York etc. (1999).

    MATH  Google Scholar 

  16. L.E.S. Ramirez and C.F.M. Coimbra, A variable order constitutive relation for viscoelasticity. Ann. der Physik 16, No 7 (2007), 543–552.

    Article  MathSciNet  MATH  Google Scholar 

  17. S.G. Samko, B. Ross, Integration and differentiation to a variable fractional order. Integr. Transf. Spec. Funct. 1, No 4 (1993), 277–300.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Shen, F. Liu, V. Anh, I. Turner, The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation. IMA J. Appl. Math. 73 (2008), 850–872.

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Shen, F. Lin, V. Anh, Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation. Numerical Algorithm 56, No 3 (2011), 383–404.

    Article  MATH  Google Scholar 

  20. C.M. Soon, C.F.M. Coimbra, M.H. Kobayashi, The variable viscoelasticity operator. Annalen der Physik 14, No 6 (2005), 378–389.

    Article  MATH  Google Scholar 

  21. N.H. Sweilam, M.M. Khader, A.M. Nagy, Numerical solution of twosided space-fractional wave equation using finite difference method. Journal of Comput. and Applied Mathematics 235 (2011), 2832–2841.

    Article  MathSciNet  MATH  Google Scholar 

  22. N.H. Sweilam, M.M. Khader R.F. Al-Bar, Numerical studies for a multi-order fractional differential equation. Phys. Lett. A 371 (2007), 26–33.

    Article  MathSciNet  MATH  Google Scholar 

  23. N.H. Sweilam, M.M. Khader, A Chebyshev pseudo-spectral method for solving fractional order integro-differential equations. ANZIAM J. 51 (2010), 464–475.

    Article  MathSciNet  MATH  Google Scholar 

  24. Q. Yang, F. Liu, I. Turner, Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Modelling, 34, No 1 (2010), 200–218.

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Zhuang, F. Liu V. Anh, I. Turner, Numerical methods for the variable-order fractional advection-diffusion with a nonlinear source term. SIAM J. on Numerical Analysis 47, No 3 (2009), 1760–1781.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. H. Sweilam.

About this article

Cite this article

Sweilam, N.H., Khader, M.M. & Almarwm, H.M. Numerical studies for the variable-order nonlinear fractional wave equation. fcaa 15, 669–683 (2012). https://doi.org/10.2478/s13540-012-0045-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-012-0045-9

MSC 2010

Key Words and Phrases

Navigation