Skip to main content
Log in

Size effect and dielectric properties of NH4H2PO4 — porous glass composites

  • Research Article
  • Published:
Materials Science-Poland

Abstract

NH4H2PO4 nano-composite antiferroelectric materials in porous glass have been studied by means of dielectric and dilatometric investigations. Dielectric spectroscopy measurements in a wide frequency range are reported here for the first time, for both the antiferro- and paraelectric phases of ammonium dihydrogen phosphate (ADP) embedded in a porous matrix. Low frequency relaxation processes above the phase transition temperature were shown to occur. An investigation of the thermal expansion revealed a negative volume jump at the phase transition point. It was found that the phase transition temperature in ADP crystals embedded in porous glass decreased with the decrease of the mean pore size. The experimentally observed shift of the phase transition temperature is caused by a combination of size and pressure effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landolt-Bornstein: Numerical data and functional relationships in science and technology: Group III: Crystals and solid state physics, vol.16, Edited by K. -H. Hellwege, Springer-Verlag Berlin Heidelberg New York, 1982.

    Google Scholar 

  2. Lines M. E., Glass A. M., Principle and applications of ferroelectrics and related materials, Clarendon Press, Oxford, 1977.

    Google Scholar 

  3. Lasave J., Koval S., Migoni R.L., Phys. B 404 (2009), 2749.

    Article  CAS  Google Scholar 

  4. Samara G.A., Phys. Rev. Lett. 27 (1971), 103–106.

    Article  CAS  Google Scholar 

  5. Tarnavich V., Korotkov L., Karaeva O., Naberezhnov A., Rysiakiewicz-pasek E., Opt. Appl. XL, 2 (2010), 305.

    Google Scholar 

  6. Marciniszyn T., Poprawski R., Komar J., Sieradzki A., Phase Transitions 83 (2010), 909.

    Article  CAS  Google Scholar 

  7. Rysiakiewicz-Pasek E., Lukaszewski P., Bogdanska J., Opt. Appl. 30 (2000), 173.

    CAS  Google Scholar 

  8. Dziedzic J., Poprawski R., Bronowska W., Acta. Phys. Pol. A 63 (1983), 45.

    Google Scholar 

  9. Colla E.V., Fokin A.V., Kumzerov Yu., Sol. State. Comm. 103 (1997), 127.

    Article  CAS  Google Scholar 

  10. Frennibg G., Phys. Rev. B 65 (2002), 245117.

    Article  Google Scholar 

  11. Jonscher A.K., Frost M.S., Thin Sol. Films 37 (1976), 267.

    Article  CAS  Google Scholar 

  12. Chen R.H., Yen Chen-chieh, Shern C.S., Fukami T., Sol. State Ion. 177 (2006), 2857.

    Article  CAS  Google Scholar 

  13. Zwicker B., Helv. Phys. Acta 19 (1946), 523.

    CAS  Google Scholar 

  14. Cook W.O., J. Appl. Phys. 38 (1967), 1637.

    Article  CAS  Google Scholar 

  15. Boiko A.A., Golovnin V.A., Sov. Phys. Crystallogr. 15 (1970), 186.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Rysiakiewicz-Pasek.

Additional information

This paper was presented at the Conference Functional and Nanostructured Materials, FNMA 11, 6–9 September 2011, Szczecin, Poland

About this article

Cite this article

Ciżman, A., Komar, J., Marciniszyn, T. et al. Size effect and dielectric properties of NH4H2PO4 — porous glass composites. Mater Sci-Pol 30, 143–150 (2012). https://doi.org/10.2478/s13536-012-0012-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13536-012-0012-5

Keywords

Navigation