Skip to main content
Log in

(Bi2Te3)0:25(Sb2Te3)0:75 crystal structure improvements with excess Te as studied by AFM, SEM, EBSD and XRD

  • Published:
Materials Science-Poland

Abstract

(Bi2Te3) x (Sb2Te3)1−x solid solutions with x = 0:2, 0.25 and 0.3 − p type thermoelectric compounds with an excess of Tellurium dopant up to 4 wt% were crystallized. By increasing the Bi2Te3 content in the Bi-Sb-Te system, the hole concentration decreased and in consequence caused an optimum Seebeck coefficient and a decrease in electrical conductivity and thermal conductivity, thus resulting in an increase in the figure of merit at x = 0:25. The results showed that optimum thermoelectric properties can be achieved for a mixture of x = 0:25 with 3 wt% Te added. Structural characterizations of this compound in the absence and presence of the dopant were carried out by means of X-Ray diffraction measurement, scanning electron microscopy, electron backscattering diffraction and atomic force microscopy. Detailed analyses confirm that the improvements in thermoelectric parameters due to the intrinsic structure and minimum defects during crystallization of the compounds result from the excess of Te.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ioffe A.F., Semiconductor thermoelements and thermoelectric cooling, Infosearch, London, 1957. P. 39.

    Google Scholar 

  2. Goldsmid H.J., Electronic refrigeration, Piton, London, 1986.

    Google Scholar 

  3. Ha H.P., Cho Y.W., Byun J.Y., Shim J.D., Proc. 12th Int. Conf. Thermoelectrics, Yokohama, Japan, 1993, p. 105.

  4. Ivanova L.D., Granatkina Yu.v., Polikarpova N.V., Smirnova E.I., Inorg. Mater., 33 (1997), 558.

    CAS  Google Scholar 

  5. Zakeri M., Allahkarami M., Kavei Gh., Khanmohammadian A., Rahimipour M.R., J. Mater. Sci., 43 (2008), 1638.

    Article  CAS  Google Scholar 

  6. Zakeri M., Allahkarami M., Kavei Gh., Khanmohammadian A., Rahimipour M.R., J. Mater. Process. Tech., 209 (2009), 96.

    Article  CAS  Google Scholar 

  7. Seo J., Park K., Lee D., LEE C., Scr. Mater., 38 (1998), 477.

    Article  CAS  Google Scholar 

  8. Hyun D.B., Hwang J.S., Shim J.D., Oh T.S., J. Mater. Sci., 36 (2001), 1285.

    Article  CAS  Google Scholar 

  9. Tritt T.M., Science, 283 (1999), 804.

    Article  CAS  Google Scholar 

  10. Smith M.J., Knight R.J., Spencer C.W., J. Appl. Phys., 33 (1962), 2186.

    Article  CAS  Google Scholar 

  11. Oh T.S., Hyun B.D., Kolomoeets E.D., Scripta Mater., 42 (2000), 849.

    Article  CAS  Google Scholar 

  12. Kavei G., Karami M.A., Bull. Mater. Sci., Vol. 29 № 7 (2006), 659.

    CAS  Google Scholar 

  13. Jiang J., Chen L., Bai S., Yao Q., Wang Q., J. Cryst. Growth, 277 (2005), 258.

    Article  CAS  Google Scholar 

  14. Yang J., Aizawa T., Yamamoto A., Ohta T., J. Alloy Comp., 309 (2000), 225.

    Article  CAS  Google Scholar 

  15. Heon P.H., Young W.C., Ji Y.B., Jae D.S., J. Phys. Chem. Solids, 55 (1994), 1233.

    Article  Google Scholar 

  16. Kim H.C., Oh T.S., Hyun D.B., J. Phys. Chem. Solids, 61 (2000), 743.

    Article  CAS  Google Scholar 

  17. Smirous K., Stourac L., Z. Naturforsch. A, 14 (1959), 848.

    Google Scholar 

  18. Rosi F.D., Hockings E.F., Lindenblad N.E., RCA Rev., 22 (1961),82.

    Google Scholar 

  19. Xi’an Fan, Yang J., Zhu W., Bao S., Duan X., Zhang Q., J. Alloy Comp., Vol. 448 Issues 1–2 (2008), 308.

    Google Scholar 

  20. Scherrer H., Hammou B. And Scherrer S., Phys, Lett. A, 130 (1988), 161.

    Article  CAS  Google Scholar 

  21. Hsu K.F., Loo S., Guo F., Chen W., Dyck J.S., Uher C., Hogen T., Polychroniadis E.K., Kanatzidis M.G., Science, 303 (2004), 818.

    Article  CAS  Google Scholar 

  22. Birdi K.S., Scanning Prob Microscopes, Applications in Science and Technology, CRC Press, Boca Raton, London, 2003.

    Book  Google Scholar 

  23. Kavei G., Zare Y., Seyyedi A., Journal of Thermoelectricity, № 2 (2008), 57.

    Google Scholar 

  24. A.V. Petrov, V.A. Kutasov, Thermoelectric properties of semiconductors (ed.) (New York: Consultants Bureau), (1964), p. 17.

    Google Scholar 

  25. Alam M.N., Blackman M., Pashley D.W., Highangle Kikuchi Patterns, Proc. Roy. Soc., 221 (1954), 224.

    Article  CAS  Google Scholar 

  26. Baba-Kishi K.Z., Dingley D.J., J. Appl. Cryst., 22 (1989), 189.

    Article  CAS  Google Scholar 

  27. Kavei G., Karami M.A., Eur. Phys. J. Appl. Phys., 42 (2008), 67.

    Article  CAS  Google Scholar 

  28. Uemura K., Nishida I., Thermoelectric Semiconductors and their Applications, Nikkan Kogyo Shinbun Press, Tokyo, 1988, p. 145.

    Google Scholar 

  29. Seo J., Park K., Lee D., Lee C., Scripta Mater., 38 (1998), 477.

    Article  CAS  Google Scholar 

  30. Iwaisoko Y., Aizawa T., Yamamoto A., Ohta T., Jpn. J. Powder Metall., Vol. 45 № 10 (1998), 958.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kavei.

About this article

Cite this article

Kavei, G., Ahmadi, K., Shadmehr, A.K. et al. (Bi2Te3)0:25(Sb2Te3)0:75 crystal structure improvements with excess Te as studied by AFM, SEM, EBSD and XRD. Mater Sci-Pol 29, 143–151 (2011). https://doi.org/10.2478/s13536-011-0021-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13536-011-0021-9

Keywords

Navigation