Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access August 21, 2012

Refinement of genetic and structural models of the Úrkút manganese ore deposit (W-Hungary, Europe) using statistical evaluation of archive data

  • Lóránt Bíró EMAIL logo , Márta Polgári , Tivadar Tóth and Tamás Vigh
From the journal Open Geosciences

Abstract

Although the Úrkút manganese ore deposit in western placecountry-regionHungary has been exploited for at least 90 years, there are still numerous open questions concerning ore genetics as well as structure and geometry of the ore body. A large set of available archive data for the deposit have been reviewed and evaluated in order to solve some of the most crucial problems. For processing, besides diverse GIS approaches, univariate and multivariate statistical methods were used on the created unified database. The main aims of the mathematical treatment were giving a classification scheme for the wide spectrum of Mn-ores based on their chemical composition (Mn, Fe, Si, P) as well as evaluation of their spatial distribution. For the ore characterization and understanding the genetic processes, cluster and discriminant function analyses were used. Results of the multivariate treatment verified the existence of different ore types and provided an exact chemical definition for all of them. It alsoinferred that the main geochemical processes that took place in ore genesis were similar for all sample groups (ore types) with significantly different weights in each case.

A 3D evaluation of the Úrkút mine heading map system shows that the ore body covers the footwall surface as a stratiform sheet throughout the study area. Palaeo-relief studies suggest a significant difference between the footwall and hanging wall morphologies which clearly implies tectonic activity following ore deposition. The deposit was affected by an E-W compression stress field near the Aptian-Albian transition causing folding of the Mn deposit.

[1] Bíró L., Polgári M., Tóth T., Kovács J., Knauer J., Vigh T., Reappraisal of archive data of manganese ore (Úrkút, Hungary) (in Hungarian). GeoLitera Publisher, Szeged, Hungary, 2009 Search in Google Scholar

[2] Polgári M., Hein J.R., Vigh T., Szabó-Drubina M., Fórizs I., Bíró L., Müller A., Tóth A.L., Microbial processes and the origin of the Úrkút manganese deposit, Hungary. Ore Geol. Rev., 2012, doi: 10.1016/j.oregeorev.2011.10.001. 10.1016/j.oregeorev.2011.10.001Search in Google Scholar

[3] Polgári M., Okita P.M., Hein J.R., Stable Isotope Evidence for the Origin of the Úrkút Manganese Ore Deposit, Hungary. J Sediment. Petrol., 1991, 61, 384–393 10.1306/D426771C-2B26-11D7-8648000102C1865DSearch in Google Scholar

[4] Haas J., Influence of global, regional, and local factors on the genesis of the Jurassic manganese ore formation in the Transdanubian Range, Hungary. Ore Geol. Rev., 2012, doi:10.1016/j.oregeorev.2011.08.006 10.1016/j.oregeorev.2011.08.006Search in Google Scholar

[5] Polgári M., Manganese geochemistry reflected by black shale formation and diagenetic processes — Model of formation of the carbonatic manganese ore of Úrkút: Special Series of Hungarian Geological Institute, Karpati Publish House, Ushgorod, 1993 Search in Google Scholar

[6] Cseh Németh J, Grasselly G., Szabó Z., Sedimentary manganese deposits of Hungary. In: Varentsov I,M,, Grasselly G. (Eds), Geology and Geochemistry of Manganese. Akadémiai Kiadó (Budapest) 1980, 2, 199–223 Search in Google Scholar

[7] Szabó Z., Mining of manganese in Bakony mountains. In commemoration of mining engineer József Farkas. Mangán Ltd. Úrkút, Ajka, 2006 Search in Google Scholar

[8] Variowin P.Y., Software for Spatial Data Analysis in 2D. Springer Verlag, 1996 Search in Google Scholar

[9] Moore I.D., Lewis A., Gallant J.C., Terrain properties: Estimation Methods and Scale Effects. Modeling Change in Environmental Systems. John Wiley and Sons, New York, 1993 Search in Google Scholar

[10] Haas J., Geology of Hungary. Eötvös Lorand University Publishing House, Budapest, 2001 Search in Google Scholar

[11] Boström K., Kraemer T., Gartner S., Provenance and accumulation rates of opaline silica Al, Ti, Fe, Mn, Cu, Ni and Co in pelagic sediments. Chem. Geol.. 1973, 11, 123–148 http://dx.doi.org/10.1016/0009-2541(73)90049-110.1016/0009-2541(73)90049-1Search in Google Scholar

[12] Bonatti E., Zerbi M., Kay R., Rydell H., Metalliferous deposits from the Apennine ophiolites: Mesozoic equivalents of modern deposits from oceanic spreading centers. Geol. Soc. Am. Bull., 1976, 87, 83–94 http://dx.doi.org/10.1130/0016-7606(1976)87<83:MDFTAO>2.0.CO;210.1130/0016-7606(1976)87<83:MDFTAO>2.0.CO;2Search in Google Scholar

[13] Crerar D.A., Namson J., Chyi M.S., Williams L., Feigenson M.D., Manganiferous cherts of the Franciscan assemblage: I. General geology, ancient and modern analogues, and implications for hydrothermal convection at oceanic spreading centers. Econ. Geol., 1982, 77, 519–540 http://dx.doi.org/10.2113/gsecongeo.77.3.51910.2113/gsecongeo.77.3.519Search in Google Scholar

[14] Bonatti E., Hydrothermal metal deposits from the oceanic rifts: a classification. In: Rona P.A., Bostrom K., Laubier L., Smith Jr. K.L. (Eds.), Hydrothermal processes at seafloor spreading centers. New York, Plemun Press 1983, 595–663 10.1007/978-1-4899-0402-7Search in Google Scholar

[15] Robertson A.H.F., Boyle J.F., Tectonic setting and origin of metalliferous sediments in the Mesozoic Tethys ocean. In: Rona P.A., Bostrom K., Laubier L., Smith Jr. K.L. (Eds.), Hydrothermal processes at seafloor spreading centers. New York, Plemun Press 1983, 595–663 10.1007/978-1-4899-0402-7_26Search in Google Scholar

[16] Glasby G.P., Hydrothermal manganese deposits in island arcs and related to subduction processes: a possible model for genesis. Ore Geol. Rev., 1988, 4, 145–153 http://dx.doi.org/10.1016/0169-1368(88)90010-810.1016/0169-1368(88)90010-8Search in Google Scholar

[17] Chen J.C., Owen R.M., The hydrothermal component in ferromanganese nodules from the sutheast Pacific Ocean. Geochim. Cosmochim. Ac., 1989, 53, 1299–1305 http://dx.doi.org/10.1016/0016-7037(89)90064-110.1016/0016-7037(89)90064-1Search in Google Scholar

[18] Hein J.R., Koschinsky A., Halbach P., Manheim F.T., Bau M., Kang J.K., Lubick N., Iron and manganese oxide mineralization in the Pacific. Manganese mineralization: geochemistry and mineralogy of terrestrial and marine deposits. Geological Society Special Publication, London, 1997, 119, 123–138 http://dx.doi.org/10.1144/GSL.SP.1997.119.01.0910.1144/GSL.SP.1997.119.01.09Search in Google Scholar

[19] Nath B.N., Plüger W.L., Roelandts I., Geochemical constraints on the hydrothermal origin of ferromanganese encrustations from the Rodrigez Triple Junction, placeIndian Ocean. In: Manganese Mineralization: Geochemistry and Mineralogy of Terrestial and Marine Deposits. Geological Society Special Publication, London, 1997, 199–213 10.1144/GSL.SP.1997.119.01.13Search in Google Scholar

[20] Szabó Z., The genesis of the manganese deposits, Bakony Mts. Ph.D. Thesis, József Attila University, Szeged, Hungary, 1977 Search in Google Scholar

[21] Szabó Z., Grasselly G., Genesis of manganese oxide ore in the Úrkút basin, Hungary. In: Varentsov I.M., Grasselly G. (Eds.), Geology and Geochemistry of Manganese. Akadémiai Kiadó (Budapest) 1980, 2, 223–236 Search in Google Scholar

[22] Szabó Z., Grasselly G., Cseh Németh J., Some conceptual questions regarding the origin of manganese in the Úrkút Deposit, Hungary. Chem. Geol., 1981, 34, 19–29 http://dx.doi.org/10.1016/0009-2541(81)90068-110.1016/0009-2541(81)90068-1Search in Google Scholar

[23] Kaeding L., Brockamp O., Harder H., Submarin-Hydrothermale Entstehung der Sedimentaren Mn-Lagerstatte Úrkút (Ungarn). Chem. Geol., 1983, 40, 251–268 http://dx.doi.org/10.1016/0009-2541(83)90032-310.1016/0009-2541(83)90032-3Search in Google Scholar

[24] Varentsov I.M., Grasselly G., Szabó Z., Ore-formation in the early-Jurassic basin of Central Europe: Aspects of mineralogy, geochemistry and genesis of the Úrkút manganese deposit, Hungary. Chemie der Erde, 1988, 48, 257–304 Search in Google Scholar

[25] Polgári M., Szabó-Drubina M., Szabó Z., Theoretical model for the Mid-European Jurassic Mncarbonate mineralization Úrkút, Hungary. Bulletin of Geosciences, 2004, 79, 53–61 Search in Google Scholar

[26] Humphris S.E., Zierenberg R.A., Mullineaux L.S., Thomson R.E. (Eds), Seafloor hydrothermal systems. Physical, chemical, biological, and geological interactions. American Geophysical Union, Washington DC. USA, 1995 10.1029/GM091Search in Google Scholar

[27] Morgan J.J., Kinetics of reaction between O2 an Mn(II) species in aqueous solutions. Geochim. Cosmochim. Ac., 2005, 69, 35–48 http://dx.doi.org/10.1016/j.gca.2004.06.01310.1016/j.gca.2004.06.013Search in Google Scholar

[28] Polgári M, Szabó Z, Szederkényi T. (Eds). Manganese Ores in Hungary. Regional Committee of the Hungarian Academy of Sciences, Szeged, Juhász Publishing House, 2000 Search in Google Scholar

Published Online: 2012-8-21
Published in Print: 2012-9-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.2478/s13533-011-0079-2/html
Scroll to top button