Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 11, 2013

Elastic fields of interacting point defects within an ultra-thin fcc film bonded to a rigid substrate

  • Hossein Shodja EMAIL logo , Maryam Tabatabaei , Alireza Ostadhossein and Ladan Pahlevani
From the journal Open Engineering

Abstract

Certain physical and mechanical phenomena within ultra-thin face-centered cubic (fcc) films containing common types of interacting point defects are addressed. An atomic-scale lattice statics in conjunction with many-body interatomic potentials suitable for binary systems is conducted to analyze the effects of the depth on the: (1) formation energy and layer-by-layer displacements due to the presence of vacancy-octahedral self-interstitial atom (OSIA) ensemble, and (2) elastic fields as well as the free surface shape in the case of vacancy-dopant interaction. Moreover, the effects of the inter-defect spacing for various depths are also examined. To ensure reasonable accuracy and numerical convergence, the atomic interaction up to the second-nearest neighbor is considered.

[1] Zhi-Gang Z., Zi-Long T., Point Defects and Applications of Chemical Sensors Ceramics, J. Inorg. Mater., 2009, 24, 650–660 http://dx.doi.org/10.3724/SP.J.1077.2009.0065010.3724/SP.J.1077.2009.00650Search in Google Scholar

[2] Prisbrey L., Roundy D., Blank K., Fifield L. S., et al., Electrical Characteristics of Carbon Nanotube Devices Prepared with Single Oxidative Point Defects, J. Phys. Chem. C, 2012, 116, 1961–1965 http://dx.doi.org/10.1021/jp208870c10.1021/jp208870cSearch in Google Scholar

[3] Morkoç H., Comprehensive characterization of hydride VPE grown GaN layers and templates, Mater. Sci. Eng. R, 2001, 33, 135–207 http://dx.doi.org/10.1016/S0927-796X(01)00031-610.1016/S0927-796X(01)00031-6Search in Google Scholar

[4] Kobayashi M., Aoyama N., Hashiba S., Miura S., et al., Dependence of Localized Deformation on Point Defect Development Caused by Intersected Cross Slip among Dislocations, Key Eng. Mater., 2007, 340–341, 193–198 http://dx.doi.org/10.4028/www.scientific.net/KEM.340-341.19310.4028/www.scientific.net/KEM.340-341.193Search in Google Scholar

[5] Bao Z. L., Grist S., Majumder S., Xu L. B., et al., Residual Stress, Defects, and Electrical Properties of Epitaxial Copper Growth on GaAs, J. Electrochem. Soc., 2009, 156, D138–D145 http://dx.doi.org/10.1149/1.307387610.1149/1.3073876Search in Google Scholar

[6] Morse P. M., Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels, Phys. Rev., 1929, 34, 57–64 http://dx.doi.org/10.1103/PhysRev.34.5710.1103/PhysRev.34.57Search in Google Scholar

[7] Hoekstra P., Behrendt D. R., Energies of Two Interstitial Configurations in a Face-Centered Cubic Crystal, Phys. Rev., 1962, 128, 560–561 http://dx.doi.org/10.1103/PhysRev.128.56010.1103/PhysRev.128.560Search in Google Scholar

[8] Bullough R., Hardy J. R., Phil. Mag., 1968, 17, 833–842 http://dx.doi.org/10.1080/1478643680822303210.1080/14786436808223032Search in Google Scholar

[9] Flocken J. W., Hardy J. R., Application of the Method of Lattice Statics to Interstitial Cu Atoms in Cu, Phys. Rev., 1968, 175, 919–927 http://dx.doi.org/10.1103/PhysRev.175.91910.1103/PhysRev.175.919Search in Google Scholar

[10] Sato A., Watanabe Y., Mura T., Octahedral Defects in a b.c.c. Lattice Examined by Lattice Theory, J. Phys. Chem. Solids, 1988, 49, 529–540 http://dx.doi.org/10.1016/0022-3697(88)90064-910.1016/0022-3697(88)90064-9Search in Google Scholar

[11] Rafii-Tabar H., Sutton A. P., Long-range Finnis-Sinclair potentials for fcc metallic alloys, Phil. Mag. Lett., 1991, 63, 217–224 http://dx.doi.org/10.1080/0950083910820599410.1080/09500839108205994Search in Google Scholar

[12] Sutton A. P., Chen J., Long-range Finnis-Sinclair potentials, Phil. Mag. Lett., 1990, 61, 139–164 http://dx.doi.org/10.1080/0950083900820649310.1080/09500839008206493Search in Google Scholar

[13] Finnis M. W., Sinclair J. E., A simple empirical Nbody potential for transition metals, Phil. Mag. A, 1984, 50, 45–55 http://dx.doi.org/10.1080/0141861840824421010.1080/01418618408244210Search in Google Scholar

[14] Shodja H. M., Tehranchi A., A formulation for the characteristic lengths of fcc materials in first strain gradient elasticity via the Sutton-Chen potential, Phil. Mag., 2010, 90, 1893–1913 http://dx.doi.org/10.1080/1478643090357145310.1080/14786430903571453Search in Google Scholar

[15] Shodja H. M., Kamalzare M., A study of nanovoid, Griffith-Inglis crack, cohesive crack, and some associated interaction problems in fcc materials via the many body atomic scale FEM, Comput. Mater. Sci., 2009, 45, 275–284 http://dx.doi.org/10.1016/j.commatsci.2008.09.02910.1016/j.commatsci.2008.09.029Search in Google Scholar

[16] Shodja H. M., Pahlevani L., Hamed E., Inclusion problems associated with thin fcc films: Linkage between eigenstrain and inter-atomic potential, Mech. of Mater., 2007, 39, 803–818 http://dx.doi.org/10.1016/j.mechmat.2007.02.00210.1016/j.mechmat.2007.02.002Search in Google Scholar

[17] Born M., Huang K., Dynamical theory of crystal lattices, Clarendon press, Oxford, 1954 Search in Google Scholar

[18] Seeger A., Mann E., Bildungsenergien und gitterverzerrungen von zwischengitteratomen und leerstellen in kubisch-flachen-zentrierten kristallen, tnsbesondere in kupfer, J. Phys. Chem. Solids, 1960, 12, 326–340 http://dx.doi.org/10.1016/0022-3697(60)90054-810.1016/0022-3697(60)90054-8Search in Google Scholar

[19] Bennemann K. H., Tewordt L., Z. Naturforsch., 1960, 15a, 772 10.1515/zna-1960-0903Search in Google Scholar

[20] Seeger A., Mann E., Jan R.v., Zwischengitteratome in kubisch-flachen-zentrierten kristallen, insbesondere in kupfer, J. Phys. Chem. Solids, 1962, 23, 639–658 http://dx.doi.org/10.1016/0022-3697(62)90524-310.1016/0022-3697(62)90524-3Search in Google Scholar

[21] Jelinek B., Groh S., Horstemeyer M. F., Houze J., et al., Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys, Phys. Rev. B, 2012, 85, 245102 http://dx.doi.org/10.1103/PhysRevB.85.24510210.1103/PhysRevB.85.245102Search in Google Scholar

[22] Mendelev M. I., Kramer M. J., Becker C. A., Asta M., Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu, Phil. Mag., 2008, 88, 1723–1750 http://dx.doi.org/10.1080/1478643080220648210.1080/14786430802206482Search in Google Scholar

[23] Freund L. B., Suresh S., Thin Film Materials: Stress, Defect Formation and Surface Evolution, Cambridge university press, Cambridge, 2003 10.1017/CBO9780511754715Search in Google Scholar

Published Online: 2013-12-11
Published in Print: 2013-12-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.2478/s13531-013-0116-7/html
Scroll to top button