Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access June 1, 2012

Repetitive transcanial magnetic stimulation (RTMS) modulates event-related potential (ERP) indices of attention in autism

  • Manuel Casanova EMAIL logo , Joshua Baruth , Ayman El-Baz , Allan Tasman , Lonnie Sears and Estate Sokhadze

Abstract

Individuals with autism spectrum disorder (ASD) have previously been shown to have significantly augmented and prolonged event-related potentials (ERP) to irrelevant visual stimuli compared to controls at both early and later stages (e.g., N200, P300) of visual processing and evidence of an overall lack of stimulus discrimination. Abnormally large and indiscriminative cortical responses to sensory stimuli may reflect cortical inhibitory deficits and a disruption in the excitation/inhibition ratio. Low-frequency (≤ 1HZ) repetitive transcranial magnetic stimulation (rTMS) has been shown to increase inhibition of stimulated cortex by the activation of inhibitory circuits. It was our prediction that after 12 sessions of low-frequency rTMS applied bilaterally to the dorsolateral prefrontal cortices in individuals with ASD there would be a significant improvement in ERP indices of selective attention evoked at later (i.e., 200–600 ms) stages of attentional processing as well as an improvement in motor response error rate. We assessed 25 participants with ASD in a task of selective attention using illusory figures before and after 12 sessions of rTMS in a controlled design where a waiting-list group of 20 children with ASD performed the same task twice. We found a significant improvement in both N200 and P300 components as a result of rTMS as well as a significant reduction in response errors. We also found significant reductions in both repetitive behavior and irritability according to clinical behavioral questionnaires as a result of rTMS. We propose that rTMS has the potential to become an important therapeutic tool in ASD research and treatment.

[1] American Psychiatric Association diagnostic and statistical manual of mental disorders (DSM-IV TR), 4th ed., American Psychiatric Association, Washington, DC, 2000 Search in Google Scholar

[2] Charman T., Autism spectrum disorders, Psychiatry, 2008, 7, 331–334 http://dx.doi.org/10.1016/j.mppsy.2008.05.01510.1016/j.mppsy.2008.05.015Search in Google Scholar

[3] Happe F.G.E., Autism: cognitive deficit or cognitive style? Trends Cogn. Sci., 1999, 3, 216–222 http://dx.doi.org/10.1016/S1364-6613(99)01318-210.1016/S1364-6613(99)01318-2Search in Google Scholar

[4] Casanova M.F., Buxhoeveden D., Gomez J., Disruption in the inhibitory architecture of the cell minicolumn: implications for autism, Neuroscientist, 2003, 9, 496–507 http://dx.doi.org/10.1177/107385840325355210.1177/1073858403253552Search in Google Scholar

[5] Gomes E., Pedroso F.S., Wagner M.B., Auditory hypersensitivity in the autistic spectrum disorder, Pro. Fono., 2008, 20, 279–284 http://dx.doi.org/10.1590/S0104-5687200800040001310.1590/S0104-56872008000400013Search in Google Scholar

[6] Jeste S.S., Nelson C.A. 3rd., Event related potentials in the understanding of autism spectrum disorders: an analytical review, J. Autism Dev. Disord., 2009, 39, 495–510 http://dx.doi.org/10.1007/s10803-008-0652-910.1007/s10803-008-0652-9Search in Google Scholar

[7] Coles M.G.H., Rugg M.D., Event-related brain potentials: an introduction, In: Rugg M.D., Coles M.G.H. (Eds.), Electrophysiology of mind. Event-related brain potentials and cognition, Oxford University Press, Oxford, 1995 10.1093/acprof:oso/9780198524168.003.0001Search in Google Scholar

[8] Eichele T., Specht K., Moosmann M., Jongsma M.L., Quiroga R.Q., et al., Assessing the spatiotemporal evolution of neuronal activation with single-trial event-related potentials and functional MRI, Proc. Natl. Acad. Sci. U S A, 2005, 102, 17798–17803 http://dx.doi.org/10.1073/pnas.050550810210.1073/pnas.0505508102Search in Google Scholar

[9] Folstein J.R., Van Petten C., Rose S.A., Novelty and conflict in the categorization of complex stimuli, Psychophysiology, 2008, 45, 467–479 http://dx.doi.org/10.1111/j.1469-8986.2007.00628.x10.1111/j.1469-8986.2007.00628.xSearch in Google Scholar

[10] Herrmann C.S., Knight R.T., Mechanisms of human attention: event related potentials and oscillations, Neurosci. Biobehav. Rev., 2001, 25, 465–476 http://dx.doi.org/10.1016/S0149-7634(01)00027-610.1016/S0149-7634(01)00027-6Search in Google Scholar

[11] Picton T.W., The P300 wave of the human event-related potential, J. Clin. Neurophysiol., 1992, 9, 456–479 http://dx.doi.org/10.1097/00004691-199210000-0000210.1097/00004691-199210000-00002Search in Google Scholar PubMed

[12] Polich J., Theoretical overview of P3a and P3b, In: Polich J. (Ed.), Detection of change. Event-related potential and fMRI findings, Kluwer Academic Press, Boston, 2003 10.1007/978-1-4615-0294-4_5Search in Google Scholar

[13] Polich J., Updating P300: an integrative theory of P3a and P3b, J. Clin. Neurophysiol., 2007, 118, 2128–2148 http://dx.doi.org/10.1016/j.clinph.2007.04.01910.1016/j.clinph.2007.04.019Search in Google Scholar PubMed PubMed Central

[14] Pritchard W.S., Psychophysiology of P300, Psychol. Bull., 1981, 89, 506–540 http://dx.doi.org/10.1037/0033-2909.89.3.50610.1037/0033-2909.89.3.506Search in Google Scholar

[15] Sokhadze E., Baruth J., Tasman A., Sears L., Mathai G., El-Baz A., Casanova M.F., Event-related potential study of novelty processing abnormalities in autism, Appl. Psychophysiol. Biofeedback, 2009, 34, 37–51 http://dx.doi.org/10.1007/s10484-009-9074-510.1007/s10484-009-9074-5Search in Google Scholar PubMed

[16] Baruth J.M., Casanova M., Sears L., Sokhadze E., Early-stage visual processing abnormalities in autism spectrum disorder (ASD), Transl. Neurosci., 2010, 1, 177–187 http://dx.doi.org/10.2478/v10134-010-0024-910.2478/v10134-010-0024-9Search in Google Scholar PubMed PubMed Central

[17] Casanova M.F., Buxhoeveden D.P., Brown C., Clinical and macroscopic correlates of minicolumnar pathology in autism, J. Child Neurol., 2002, 17, 692–695 http://dx.doi.org/10.1177/08830738020170090810.1177/088307380201700908Search in Google Scholar PubMed

[18] Rubenstein J.L.R., Merzenich M.M., Model of autism: increased ratio of excitation/inhibition in key neural systems, Gen. Brain Behav., 2003, 2, 255–267 http://dx.doi.org/10.1034/j.1601-183X.2003.00037.x10.1034/j.1601-183X.2003.00037.xSearch in Google Scholar

[19] Mountcastle V.B., Introduction. Computation in cortical columns, Cereb. Cortex, 2003, 13, 2–4 http://dx.doi.org/10.1093/cercor/13.1.210.1093/cercor/13.1.2Search in Google Scholar PubMed

[20] Casanova M.F., The neuropathology of autism, Brain Pathol., 2007, 17, 422–433 http://dx.doi.org/10.1111/j.1750-3639.2007.00100.x10.1111/j.1750-3639.2007.00100.xSearch in Google Scholar PubMed PubMed Central

[21] Casanova M.F., van Kooten I., Switala A. E., van England H., Heinsen H., Steinbuch H.W.M., et al., Abnormalities of cortical minicolumnar organization in the prefrontal lobes of autistic patients, Clin. Neurosci. Res., 2006, 6, 127–133 http://dx.doi.org/10.1016/j.cnr.2006.06.00310.1016/j.cnr.2006.06.003Search in Google Scholar

[22] Casanova M.F., Buxhoeveden D.P., Switala A.E., Roy E., Asperger’s syndrome and cortical neuropathology, J. Child Neurol., 2002, 17, 142–145 http://dx.doi.org/10.1177/08830738020170021110.1177/088307380201700211Search in Google Scholar

[23] Belmonte M.K., Yurgelun-Todd D.A., Functional anatomy of impaired selective attention and compensatory processing in autism, Cognitive Brain Res., 2003, 17, 651–664 http://dx.doi.org/10.1016/S0926-6410(03)00189-710.1016/S0926-6410(03)00189-7Search in Google Scholar

[24] Gray J.R., Chabris C.F., Braver T.S., Neural mechanisms of general fluid intelligence, Nat. Neurosci., 2003, 6, 316–322 http://dx.doi.org/10.1038/nn101410.1038/nn1014Search in Google Scholar

[25] Matzel L.D., Kolata S., Selective attention, working memory, and animal intelligence, Neurosci. Biobehav. Rev., 2010, 34, 23–30 http://dx.doi.org/10.1016/j.neubiorev.2009.07.00210.1016/j.neubiorev.2009.07.002Search in Google Scholar

[26] Maeda F., Keenan J.P., Tormos J.M., Topka H., Pascual-Leone A., Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation, Clin. Neurophysiol., 2000, 111, 800–805 http://dx.doi.org/10.1016/S1388-2457(99)00323-510.1016/S1388-2457(99)00323-5Search in Google Scholar

[27] Pascual-Leone A., Valls-Sole J., Wasserman E.M., Hallett M., Responses to rapid-rate transcranial magnetic stimulation of the human cortex, Brain, 1994, 117, 847–858 http://dx.doi.org/10.1093/brain/117.4.84710.1093/brain/117.4.847Search in Google Scholar

[28] Pascual-Leone A., Walsh V., Rothwell J., Transcranial magnetic stimulation in cognitive neuroscience—virtual lesion, chronometry, and functional connectivity, Curr. Opin. Neurobiol., 2000, 10, 232–237 http://dx.doi.org/10.1016/S0959-4388(00)00081-710.1016/S0959-4388(00)00081-7Search in Google Scholar

[29] Hoffman R.E., Cavus I., Slow transcranial magnetic stimulation, longterm depotentiation, and brain hyperexcitability disorders, Am. J. Psychiatr., 2002, 159, 1093–1102 http://dx.doi.org/10.1176/appi.ajp.159.7.109310.1176/appi.ajp.159.7.1093Search in Google Scholar

[30] Näätänen R., Gaillard A.W.K., Mäntysalo S., Early selective attention effect on evoked potential reinterpreted, Acta Psychologica, 1978, 2, 313–329 http://dx.doi.org/10.1016/0001-6918(78)90006-910.1016/0001-6918(78)90006-9Search in Google Scholar

[31] Näätänen R., Schröger E., Karakas S., Tervaniemi M., Paavilainen, P., Development of a memory trace for a complex sound in the human brain, Neuroreport, 1993, 4, 503–506 http://dx.doi.org/10.1097/00001756-199305000-0001010.1097/00001756-199305000-00010Search in Google Scholar PubMed

[32] Potts G.F., Patel S.H., Azzam P.N., Impact of instructed relevance on the visual ERP, Int. J. Psychophysiol., 2004, 52, 197–209 http://dx.doi.org/10.1016/j.ijpsycho.2003.10.00510.1016/j.ijpsycho.2003.10.005Search in Google Scholar

[33] Potts G.F., Wood S.M., Kothmann D., Martin L.E., Parallel perceptual enhancement and hierarchic relevance evaluation in an audio-visual conjunction task, Brain Res., 2008, 1236, 126–139 http://dx.doi.org/10.1016/j.brainres.2008.07.10410.1016/j.brainres.2008.07.104Search in Google Scholar

[34] Carter C.S., Braver T.S, Barch D.M., Botvinick M.M., Noll D., Cohen J.D., Anterior cingulate cortex, error detection, and the online monitoring of performance, Science, 1998, 280, 747–749 http://dx.doi.org/10.1126/science.280.5364.74710.1126/science.280.5364.747Search in Google Scholar

[35] Enriquez-Geppert S., Konrad C., Pantev C., Huster R.J., Conflict and inhibition differentially affect the N200/P300 complex in a combined go/nogo and stop-signal task, Neuroimage, 2010, 51, 877–887 http://dx.doi.org/10.1016/j.neuroimage.2010.02.04310.1016/j.neuroimage.2010.02.043Search in Google Scholar

[36] West R., Bowry R., McConville C., Sensitivity of medial frontal cortex to response and nonresponse conflict, Psychophysiol., 2004, 41, 739–748 http://dx.doi.org/10.1111/j.1469-8986.2004.00205.x10.1111/j.1469-8986.2004.00205.xSearch in Google Scholar

[37] West R., Neural correlates of cognitive control and conflict detection in the Stroop and digit-location tasks, Neuropsychologia, 2003, 41, 1122–1135 http://dx.doi.org/10.1016/S0028-3932(02)00297-X10.1016/S0028-3932(02)00297-XSearch in Google Scholar

[38] Donkers F.C.L., van Boxtel G.J.M., The N2 in go/no-go tasks reflects conflict monitoring not response inhibition, Brain Cogn., 2004, 56, 165–176 http://dx.doi.org/10.1016/j.bandc.2004.04.00510.1016/j.bandc.2004.04.005Search in Google Scholar

[39] Van Veen V., Carter C.S., The timing of action-monitoring process in the anterior cingulate cortex, J. Cogn. Neurosci., 2002, 14, 593–602 http://dx.doi.org/10.1162/0898929026004583710.1162/08989290260045837Search in Google Scholar

[40] Hruby T., Marsalek P., Event-related potentials—the P3 wave, Acta Neurobiol. Exp., 2003, 63, 55–63 Search in Google Scholar

[41] Polich J., Kok A., Cognitive and biological determinants of P300: an integrative review, Biol. Psychol., 1995, 41, 103–146 http://dx.doi.org/10.1016/0301-0511(95)05130-910.1016/0301-0511(95)05130-9Search in Google Scholar

[42] Le Couteur A., Lord C., Rutter M., The autism diagnostic interview- revised (ADI-R), Western Psychological Services, Los Angeles, CA, 2003 Search in Google Scholar

[43] Wechsler D., Wechsler intelligence scale for children, 4th ed., Harcourt Assessment, Inc., San Antonio, TX, 2003 10.1037/t15174-000Search in Google Scholar

[44] Wechsler D., Wechsler abbreviated scale of intelligence, Harcourt Assessment, Inc., San Antonio, TX, 1999 10.1037/t15170-000Search in Google Scholar

[45] Ferree T.C., Luu P., Russell G.S., Tucker D.M., Scalp electrode impedance, infection risk, and EEG data quality, Clin. Neurophysiol., 2001, 112, 444–536 http://dx.doi.org/10.1016/S1388-2457(00)00533-210.1016/S1388-2457(00)00533-2Search in Google Scholar

[46] Perrin E., Pernier J., Bertrand O., Giard M., Echallier J.F., Mapping of scalp potentials by surface spline interpolation, Electroencephalogr. Clin. Neurophysiol., 1987, 66, 75–81 http://dx.doi.org/10.1016/0013-4694(87)90141-610.1016/0013-4694(87)90141-6Search in Google Scholar

[47] Fletcher E.M., Kussmaul C.L., Mangun G.R., Estimation of interpolation errors in scalp topographic mapping, Electroctoencephalogr. Clin. Neurophysiol., 1996, 98, 422–434 http://dx.doi.org/10.1016/0013-4694(96)95135-410.1016/0013-4694(96)95135-4Search in Google Scholar

[48] Srinivasan R., Tucker D.M., Murias M., Estimating the spatial Nyquist of the human EEG, Behav. Res. Meth. Instrum. Comput., 1998, 30, 8–19 http://dx.doi.org/10.3758/BF0320941210.3758/BF03209412Search in Google Scholar

[49] Luu P., Tucker D.M., Englander R., Lockfeld A., Lutsep H., Oken B., Localizing acute stroke-related EEC changes: assessing the effects of spatial undersampling, J. Clin. Neurophysiol., 2001, 18, 302–317 http://dx.doi.org/10.1097/00004691-200107000-0000210.1097/00004691-200107000-00002Search in Google Scholar PubMed

[50] Kanizsa G., Subjective contours, Sci. American, 1976, 235, 48–52 http://dx.doi.org/10.1038/scientificamerican0476-4810.1038/scientificamerican0476-48Search in Google Scholar PubMed

[51] Daskalakis Z.J., Christensen B.K., Fitzgerald P.B., Chen R., Transcranial magnetic stimulation: a new investigational and treatment tool in psychiatry, J. Neuropsychiatry Clin. Neurosci., 2002, 14, 406–415 http://dx.doi.org/10.1176/appi.neuropsych.14.4.40610.1176/jnp.14.4.406Search in Google Scholar PubMed

[52] Gershon A.A., Dannon P.N., Grunhaus L., Transcranial magnetic stimulation in the treatment of depression, Am. J. Psychiatr., 2003, 160, 835–845 http://dx.doi.org/10.1176/appi.ajp.160.5.83510.1176/appi.ajp.160.5.835Search in Google Scholar PubMed

[53] Greenberg B.D., Transcranial magnetic stimulation in anxiety disorders. In: George M.S., Belmaker R.H. (Eds.), Transcranial magnetic stimulation in clinical psychiatry, American Psychiatric Publishing, Inc., Washington, DC, 2007 Search in Google Scholar

[54] Loo C., Mitchell P., A review of the efficacy of transcranial magnetic stimulation (TMS) treatment for depression, and current and future strategies to optimize efficacy, J. Affect. Disord., 2005, 88, 255–267 http://dx.doi.org/10.1016/j.jad.2005.08.00110.1016/j.jad.2005.08.001Search in Google Scholar PubMed

[55] Wassermann E.M., Lisanby S.H., Therapeutic application of repetitive transcranial magnetic stimulation: a review, Clin. Neurophysiol., 2001, 112, 1367–1377 http://dx.doi.org/10.1016/S1388-2457(01)00585-510.1016/S1388-2457(01)00585-5Search in Google Scholar

[56] Helmich R.C., Siebner H.R., Bakker M., Munchau A., Bloem B.R., Repetitive transcranial magnetic stimulation to improve mood and motor function in Parkinson’s disease, J. Neurol. Sci., 2006, 248, 84–96 http://dx.doi.org/10.1016/j.jns.2006.05.00910.1016/j.jns.2006.05.009Search in Google Scholar PubMed

[57] Sokhadze E., Baruth J., Tasman A., Mansoor M., Ramaswamy R., Sears L., Mathai G., El-Baz A., Casanova M.F., Low-frequency repetitive transcranial magnetic stimulation (rTMS) affects eventrelated potential measures of novelty processing in autism, Appl. Psychophysiol. Biofeedback, 2010, 35, 147–161 http://dx.doi.org/10.1007/s10484-009-9121-210.1007/s10484-009-9121-2Search in Google Scholar PubMed PubMed Central

[58] Baruth J., Williams E., Sokhadze E., El-Baz A., Sears L., Casanova, M.F. (2011). Repetitive transcranial stimulation (rTMS) improves electroencephalographic and behavioral outcome measures in autism spectrum disorders (ASD). Autism Sci. Digest, 2011, 1(1), 52–57. Search in Google Scholar

[59] Aman M.G., Singh N.N., Aberrant behavior checklist-community. Supplementary manual, Slosson Educational Publications, East Aurora, NY, 1994 Search in Google Scholar

[60] Aman M.G., Management of hyperactivity and other acting out problems in patients with autism spectrum disorder, Semin. Pediatr. Neurol., 2004, 11, 225–228 http://dx.doi.org/10.1016/j.spen.2004.07.00610.1016/j.spen.2004.07.006Search in Google Scholar PubMed

[61] Constantino J.N., Gruber C.P., The social responsiveness scale (SRS) manual, Western Psychological Services, Los Angeles, CA, 2005 Search in Google Scholar

[62] Bodfish J.W., Symons F.J., Lewis M.H., Repetitive behavior scale, Western Carolina Center Research Reports, Morganton, NC, 1999 10.1037/t17338-000Search in Google Scholar

[63] Bodfish J.W., Symons F.S., Parker D.E., Lewis M.H., Varieties of repetitive behavior in autism: comparisons to mental retardation, J. Autism Dev. Disord., 2000, 30, 237–243 http://dx.doi.org/10.1023/A:100559650285510.1023/A:1005596502855Search in Google Scholar

[64] Enticott P.G., Rinehart N.J., Tonge B.J., Bradshaw J.L., Fitzgerald P.B., Repetitive transcranial magnetic stimulation (rTMS) improves movement-related cortical potentials in autism spectrum disorders, Brain Stimul., 2012, 5, 30–37 http://dx.doi.org/10.1016/j.brs.2011.02.00110.1016/j.brs.2011.02.001Search in Google Scholar PubMed

[65] Sokhadze E., El-Baz A., Baruth J., Mathai G., Sears L., Casanova M.F., Effects of low frequency repetitive transcranial magnetic stimulation (rTMS) on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism, J. Autism Dev. Disord., 2009, 39, 619–634 http://dx.doi.org/10.1007/s10803-008-0662-710.1007/s10803-008-0662-7Search in Google Scholar PubMed

[66] Baruth J.M., Casanova M., El-Baz A., Horrell T., Mathai G., Sears L., Sokhadze E., Low-frequency repetitive transcranial magnetic stimulation (rTMS) modulates evoked-gamma oscillations in autism spectrum disorder (ASD), J. Neurother., 2010, 14, 179–194 http://dx.doi.org/10.1080/10874208.2010.50150010.1080/10874208.2010.501500Search in Google Scholar PubMed PubMed Central

[67] Tuchman R.F., Rapin I., Regression in pervasive developmental disorders: seizures and epileptiform electroencephalogram correlates, Pediatrics, 1997, 99, 560–566 http://dx.doi.org/10.1542/peds.99.4.56010.1542/peds.99.4.560Search in Google Scholar PubMed

[68] Mesulam M.M., Behavioral Neuroanatomy: Large-networks, association cortex, frontal syndromes, the limbic system, and hemispheric specializations. In Mesulam M.M (Ed) Principles of Behavioral and Cognitive Neurology, Oxford University Press: New York, 2nd edition, 2000, Ch. 1, pp. 1–120 Search in Google Scholar

[69] Fernandez-Duque D., Baird J., Posner, M., Executive attention and metacognitive regulation. Consc. Cogn., 2000, 9, 288–307 http://dx.doi.org/10.1006/ccog.2000.044710.1006/ccog.2000.0447Search in Google Scholar PubMed

Published Online: 2012-6-1
Published in Print: 2012-6-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.2478/s13380-012-0022-0/html
Scroll to top button