Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter December 31, 2011

Notes on the betweenness centrality of a graph

  • S. Gago EMAIL logo , J. Hurajová and T. Madaras
From the journal Mathematica Slovaca

Abstract

The betweenness centrality of a vertex of a graph is the portion of the shortest paths between all pairs of vertices passing through a given vertex. We study upper bounds for this invariant and its relations to the diameter and average distance of a graph.

[1] Beezer, R. A.— Riegsecker, J. E.— Smith, B. A.: Using minimum degree to bound average distance, Discrete Math. 226 (2001), 365–371. http://dx.doi.org/10.1016/S0012-365X(00)00156-410.1016/S0012-365X(00)00156-4Search in Google Scholar

[2] Comellas, F.— Gago, S.: Spectral bounds for the betweenness of a graph, Linear Algebra Appl. 423 (2007), 74–80. http://dx.doi.org/10.1016/j.laa.2006.08.02710.1016/j.laa.2006.08.027Search in Google Scholar

[3] Diestel, R.: Graph Theory, Springer, New York, 1997. Search in Google Scholar

[4] Everett, M. G.— Sinclair, P.— Dankelmann, P. A.: Some centrality results new and old, J. Math. Sociology 28 (2004), 215–227. http://dx.doi.org/10.1080/0022250049051667110.1080/00222500490516671Search in Google Scholar

[5] Everett, M. G.— Borgatti, S. P.: Ego network betweenness, Social Networks 27 (2005), 31–38. http://dx.doi.org/10.1016/j.socnet.2004.11.00710.1016/j.socnet.2004.11.007Search in Google Scholar

[6] Freeman, L. C.: A set of measures of centrality based on betweenness, Sociometry 40 (1977), 35. http://dx.doi.org/10.2307/303354310.2307/3033543Search in Google Scholar

[7] Gould, R. V.: Measures of betweenness in non-symmetric networks, Social Networks 9 (1987), 277–282. http://dx.doi.org/10.1016/0378-8733(87)90023-210.1016/0378-8733(87)90023-2Search in Google Scholar

[8] Graovac, A.— Pisanski, T.: On the Wiener index of a graph, J.Math.Chem. 8 (1991), 53–62. http://dx.doi.org/10.1007/BF0116692310.1007/BF01166923Search in Google Scholar

[9] Mohar, B.: Eigenvalues, diameter and mean distance in graphs, Graphs. Combin. 7 (1991), 53–64. http://dx.doi.org/10.1007/BF0178946310.1007/BF01789463Search in Google Scholar

[10] Newman, M. E. J.— Girvan, M.: Finding and evaluating community structure in networks, Phys. Rev. E (3) 69 (2004), 026113. http://dx.doi.org/10.1103/PhysRevE.69.02611310.1103/PhysRevE.69.026113Search in Google Scholar

[11] Rodriguez, J. A.— Yebra, J. L. A.: Bounding the diameter and the mean distance of a graph from its eigenvalues: Laplacian versus adjacency matrix methods, Discrete Math. 196 (1999), 267–275. http://dx.doi.org/10.1016/S0012-365X(98)00206-410.1016/S0012-365X(98)00206-4Search in Google Scholar

[12] Teranishi, Y.: Laplacian spectra and invariants of graphs, Discrete Math. 257 (2002), 183–189. http://dx.doi.org/10.1016/S0012-365X(02)00398-910.1016/S0012-365X(02)00398-9Search in Google Scholar

Published Online: 2011-12-31
Published in Print: 2012-2-1

© 2012 Mathematical Institute, Slovak Academy of Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.2478/s12175-011-0065-7/html
Scroll to top button