Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter October 23, 2009

High repetition rate, tunable, Q-switched diode pumped Tm:YLF laser

  • Ł. Gorajek EMAIL logo , J. Jabczyński , W. Żendzian , J. Kwiatkowski , H. Jelinkova , J. Sulc and M. Nemec
From the journal Opto-Electronics Review

Abstract

The aim of work was to characterize a simple oscillator consisted of Tm:YLF crystal end-pumped by a fiber coupled diode laser and active Q-switch with tunability option. About 7 W with near 35% slope efficiency was demonstrated in a free-running mode. The divergence angle was about 4.3 mrad and estimated parameter M2 < 1.3. Continuous tuning by means of Lyot’s filter, consisted of 2 quartz plates in the range of 1879.0–1939.4 nm with less than 1-nm linewidth, was achieved. For the best case (10-ms pump pulse duration, 42-A pump current corresponding to 266 mJ of pump energy), the Q-switched energy was 10.5 mJ with pulse duration of 22 ns corresponding to near 0.5 MW peak power. The 2.5 W of average power with 12.6-kW peak power and 2000-Hz repetition rate was demonstrated for cw pumping regime.

[1] M. Jani, N. Barnes, and K. Murray, “Flash-lamp-pumped Ho:Tm:Cr:YAG and Ho:Tm:Er:YLF lasers: experimental results of a single, long pulse length comparison”, Appl. Optics 36, 3357–3362 (1997). http://dx.doi.org/10.1364/AO.36.00335710.1364/AO.36.003357Search in Google Scholar

[2] N. Barnes, K. Murray, and M. Jani, “Flash-lamp-pumped Ho:Tm:Cr:YAG and Ho:Tm:Er:YLF lasers: modelling of a single, long pulse length comparison”, Appl. Optics 36, 3363–3374 (1997). http://dx.doi.org/10.1364/AO.36.00336310.1364/AO.36.003363Search in Google Scholar

[3] N. Karadimitriou, B. Klinkenberg, D. Papadopoulos, and A. Serafetinides, “Development and performance characteristics of flash lamp pumped Yb:YAG, Cr:Tm:Ho:YAG, Er:Tm:Ho:YLF laser sources and investigation of their potential biological applications”, Proc. SPIE 6633, 6633–6652 (2007). Search in Google Scholar

[4] K.L. Vodopyanov, “Pulsed mid-IR optical parametric oscillators”, in Solid-State Mid-Infrared Laser Sources, edited by I.T. Sorokina, K.L. Vodopyanov, Springer Verlag, Berlin Heidelberg, 2003. Search in Google Scholar

[5] A. Eneglander and R. Lavi, “A multi-watt mid-IR OPO using a top-hat spatial profile pump laser”, OSA Trends Opt. Photo. 24, 163–166 (1995). Search in Google Scholar

[6] M. Henriksson, L. Sjöqvist, V. Pasiskevicius, and F. Laurell, “Narrow linewidth near-degenerate optical parametric oscillation in periodically poled LiNbO3 with volume Bragg grating output coupler”, Tech. Dig. S., paper TuC4 (2006). 10.1364/ASSP.2006.TuC4Search in Google Scholar

[7] W. Żendzian, J.K. Jabczyński, and J. Kwiatkowski, “Intracavity optical parametric oscillator pumped by passively Q-switched Nd:YLF laser”, Opto-Electron. Rev. 17, 45–52 (2009). http://dx.doi.org/10.2478/s11772-008-0039-710.2478/s11772-008-0039-7Search in Google Scholar

[8] G. Huber, E.W. Duczynski, and K. Peterman, “Laser pumping of Ho-Tm-, Er- doped garnet laser at room temperature”, IEEE J. Quantum Elect. 24, 920–923 (1988). http://dx.doi.org/10.1109/3.21210.1109/3.212Search in Google Scholar

[9] P. Suni and S. Henderson, “1-mJ/pulse Tm:YAG laser pumped by a 3-W diode laser”, Opt. Lett. 16, 817–819 (1991). http://dx.doi.org/10.1364/OL.16.00081710.1364/OL.16.000817Search in Google Scholar

[10] I.F. Elder and M.J.P. Payne, “Lasing in diode-pumped Tm:YAP, Tm,Ho:YAP and Tm,Ho:YLF”, Opt. Commun. 145, 329–339 (1998). http://dx.doi.org/10.1016/S0030-4018(97)00387-810.1016/S0030-4018(97)00387-8Search in Google Scholar

[11] C. Li, J. Song, D. Shen, N. Kim, K. Ueda, Y. Huo, S. He, and Y. Cao, “Diode-pumped high-efficiency Tm:YAG lasers”, Opt. Express 4, 12–18 (1999). http://dx.doi.org/10.1364/OE.4.00001210.1364/OE.4.000012Search in Google Scholar

[12] L. Pomeranz, P. Budni, M. Lemons, C. Miller, J. Mosto, T. Pollak, and E. Chicklis, “Power scaling performance of Tm:YLF and Tm:YALO lasers”, OSA Trends Opt. Photo. 26, paper PD11 (1999). Search in Google Scholar

[13] K. Lai, W. Xie, R. Wu, Y. Lim, E. Lau, L. Chia, and P. Phua, “A 150-2-micron diode-pumped Tm:YAG laser”, OSA Trends Opt. Photo. 68, paper WE6, 2002 10.1364/ASSL.2002.WE6Search in Google Scholar

[14] P. Cerny and D. Burns, “Modelling and experimental investigation of a diode pumped Tm:YalO3 laser in a- and b-cut orientation”, IEEE J. Sel. Top. Quant. 11, 674–681 (2005). http://dx.doi.org/10.1109/JSTQE.2005.85023910.1109/JSTQE.2005.850239Search in Google Scholar

[15] S. So, J.L. Mackenzie, D.P. Shepherd, W.A. Clarkson, J.G. Betterton, and E.K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers”, Appl. Phys. B84, 389–393 (2006). Search in Google Scholar

[16] T. Fan, G. Huber, R. Byer, and P. Mitzscherlich, “Continuous-wave operation at 2.1 µm of a diode-laser-pumped, Tm-sensitized Ho:Y3Al5O12 laser at 300 K”, Opt. Lett. 12, 678–680 (1987). http://dx.doi.org/10.1364/OL.12.00067810.1364/OL.12.000678Search in Google Scholar

[17] N. Sims, Jr., M. Cimolino, N. Barnes, and B. Asbury, “10 Hz PRF operation and temperature estimation of a conductively cooled, room temperature, diode-pumped Ho:Tm:YLF laser”, OSA Trends Opt. Photo. 24, paper IL12 (1995). Search in Google Scholar

[18] D. Bruneau, S. Delmonte, and J. Pelon, “Modelling of Tm, Ho:YAG and Tm, Ho:YLF 2-µm lasers and calculation of extractable energies”, Appl. Optics 37, 8406–8419 (1998). http://dx.doi.org/10.1364/AO.37.00840610.1364/AO.37.008406Search in Google Scholar

[19] K. Schepler, B. Smith, F. Heine, and P. Budni, “Mode-locking of diode-pumped Tm,Ho:YLF”, OSA Trends Opt. Photo. 20, paper UP9 (1994). Search in Google Scholar

[20] V. Sudesh and K. Asai, “Spectroscopic and diode-pumped-laser properties of Tm, Ho:YLF; Tm, Ho:LuLF; and Tm, Ho:LuAG crystals: a comparative study”, J. Opt. Soc. Am. B20, 1829–1837 (2003). Search in Google Scholar

[21] G. Galzerano, M. Marano, S. Longhi, E. Sani, A. Toncelli, M. Tonelli, and P. Laporta, “Sub-100-ps amplitude-modulation mode-locked Tm,Ho:BaY2F8 laser at 2.06 mm”, Opt. Lett. 28, 2085–2087 (2003). http://dx.doi.org/10.1364/OL.28.00208510.1364/OL.28.002085Search in Google Scholar

[22] S. Jackson and T. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser”, Opt. Lett. 23, 1462–1464 (1998). http://dx.doi.org/10.1364/OL.23.00146210.1364/OL.23.001462Search in Google Scholar PubMed

[23] D. Shen, J. Sahu, and W. Clarkson, “High-power widely tunable Tm:fibre lasers pumped by an Er,Yb co-doped fibre laser at 1.6 µm”, Opt. Express 14, 6084–6090 (2006). http://dx.doi.org/10.1364/OE.14.00608410.1364/OE.14.006084Search in Google Scholar

[24] E. Slobodtchikov, P. Moulton, and G. Frith, “Efficient, high-power, Tm-doped silica fiber laser”, Tech. Dig. S., paper MF2 (2007). 10.1364/ASSP.2007.MF2Search in Google Scholar

[25] S. Jackson, “High power shortwave infrared fibre lasers that use silica host material”, Proc. SPIE 6998, 6998–07 (2008) Search in Google Scholar

[26] M. Meleshkevich, N. Platonov, D. Gapontsev, A. Drozhzhin, V. Sergeev, and V. Gapontsev, “415 W single-mode CW thulium fiber laser in all-fiber format”, Digest of CLEO-Europe’2007, paper CP-2-3 (2007). 10.1109/CLEOE-IQEC.2007.4386516Search in Google Scholar

[27] B. Samson and G. Frith, “Diode pump requirements for high-power fiber lasers”, Proc. Int. Congress on Applications of Lasers & Electro-Optics, Laser Institute of America, paper 501 (2007). 10.2351/1.5061074Search in Google Scholar

[28] M. Jiang and P. Tayebati, “Stable 10 ns, KW peak-power pulse generation from gain-switched thulium-doped fiber laser”, Opt. Lett. 32, 1797–1799 (2007). http://dx.doi.org/10.1364/OL.32.00179710.1364/OL.32.001797Search in Google Scholar PubMed

[29] A. Abdolvand, D. Shen, L. Cooper, R. Williams, and W. Clarkson, “Highly efficient Ho:YAG laser pumped by a Tm-doped silica fiber laser”, Tech. Dig. S., paper CThM38 (2003). Search in Google Scholar

[30] A. Dergachev, P. Moulton, and T. Drake, “High-power, high-energy Ho:YLF laser pumped with Tm:fiber laser”, OSA Trends Opt. Photo. 98, paper 608 (2005). Search in Google Scholar

[31] Y. Bai, J. Yu, M. Petros, P. Petzar, B. Trieu, H. Lee, and U. Singh, “Highly efficient Q-switched Ho:YLF laser pumped by Tm:fiber laser”, Tech. Dig. S., paper CTuN5 (2007). Search in Google Scholar

[32] I. Moskalev, V. Fedorov, S. Mirov, A. Babushkin, V. Gapontsev, D. Gapontsev, and N. Platonov, “Efficient Ho:YAG laser resonantly pumped by Tm-fiber laser”, Tech. Dig. S., paper TuB10 (2006). Search in Google Scholar

[33] D. Shen, W. Clarkson, L. Cooper, and R. Williams, “Efficient single-axial-mode operation of a Ho:YAG ring laser pumped by a Tm-doped silica fiber laser”, Opt. Lett. 29, 2396–2398 (2004). http://dx.doi.org/10.1364/OL.29.00239610.1364/OL.29.002396Search in Google Scholar

[34] I. Sorokina, E. Sorokin, A. Di Lieto, M. Tonelli, R. Page, and K. Schaffers, “Efficient broadly tunable continuous-wave Cr2+:ZnSe laser”, J. Opt. Soc. Am. B18, 926–930 (2001). Search in Google Scholar

[35] I. Moskalev, V. Fedorov, and S. Mirov, “Tunable, single-frequency, and multi-watt continuous-wave Cr2+:ZnSe lasers”, Opt. Express 16, 4145–4153 (2008). http://dx.doi.org/10.1364/OE.16.00414510.1364/OE.16.004145Search in Google Scholar

[36] R. Peterson and K. Schepler, “1.9 µm-fiber-pumped Cr:ZnSe laser”, Tech. Dig. S., paper MB13 (2005). Search in Google Scholar

[37] P. Koranda, M. Doroshenko, H. Jelínková, J. Sulc, M. Nemec, T. Basiev, V. Komar, and M. Kosmyna, “Broadly tunable Cr:ZnSe laser”, in CLEO/Europe and IQEC 2007 Conf. Digest, OSA, paper CA9_4 (2007). Search in Google Scholar

[38] S. So, J. Mackenzie, D. Shepherd, W. Clarkson, J. Betterton, E. Gorton, and J. Terry, “Power-scalable Ho:YAG slab laser, intracavity side-pumped by a Tm:YLF slab laser”, Tech. Dig. S., paper MD5 (2006). Search in Google Scholar

[39] R. Hayward, W. Clarkson, and D. Hanna, “High-power diode-pumped room-temperature Tm:YAG and intracavity-pumped Ho:YAG lasers”, Tech. Dig. S., paper MB8 (2000). Search in Google Scholar

[40] A. Dergachev and P. Moulton, “High-power, high-energy diode-pumped Tm:YLF-Ho:YLF-ZGP laser system”, OSA Trends Opt. Photo. 83, paper 137 (2003). Search in Google Scholar

[41] N. Barnes, B. Walsh, D. Reichle, and T. Axenson, “Tm:YLF pumped Ho:YAG and Ho:LuAG lasers”, OSA Trends Opt. Photo., paper TuB13 (2005). Search in Google Scholar

[42] M. Schellhorn, A. Hirth, and C. Kieleck, “Ho:YAG laser intracavity pumped by a diode-pumped Tm:YLF laser”, Opt. Lett. 28, 1933–1935 (2003) http://dx.doi.org/10.1364/OL.28.00193310.1364/OL.28.001933Search in Google Scholar

[43] A. Dergachev and P. Moulton, “High-power, high-energy diode-pumped Tm:YLF-Ho:YLF-ZGP laser system”, OSA Trends Opt. Photo. 83, paper 137 (2003). Search in Google Scholar

[44] R.J. Beach, “CW Theory of quasi-three level end-pumped laser oscillators”, Opt. Commun. 123, 385–393 (1995.) http://dx.doi.org/10.1016/0030-4018(95)00497-110.1016/0030-4018(95)00497-1Search in Google Scholar

[45] G.L. Bourdet, “Theoretical investigation of quasi-three-level longitudinally pumped continuous wave lasers”, Appl. Opt. 39, 966–971 (2000). http://dx.doi.org/10.1364/AO.39.00096610.1364/AO.39.000966Search in Google Scholar PubMed

[46] P. Cerny and D. Burns, “Modelling and experimental investigation of a diode pumped Tm:YalO3 laser in a- and b-cut orientation”, IEEE J. Sel. Top. Quant. 11, 674–681 (2005). http://dx.doi.org/10.1109/JSTQE.2005.85023910.1109/JSTQE.2005.850239Search in Google Scholar

[47] I.T. Sorokina, “Crystalline mid-infrared lasers” in Solid-State Mid-Infrared Laser Sources, edited by I.T. Sorokina and K.L. Vodopyanov, Springer Verlag, Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-36491-910.1007/3-540-36491-9Search in Google Scholar

[48] H.P. Jensen, A. Linz, R.P. Leavitt, C.A. Morrison, and D.E. Wortman, “Analysis of the optical spectrum of Tm3+ in LiYF4”, Phys. Rev. B11, 92–101 (1975). 10.1103/PhysRevB.11.92Search in Google Scholar

[49] S.A. Payne, L.L. Chase, L.K. Smith, W.L. Kway, and W.F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+”, IEEE J. Quantum Elect. 28, 2619–2630 (1992). http://dx.doi.org/10.1109/3.16132110.1109/3.161321Search in Google Scholar

[50] R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, M. Sobczyk, P. Cerny, J. Sulc, H. Jelinkova, Y. Urata, and M. Higuchi, “Comparative optical study of thulium-doped YVO4, GdVO4, and LuVO4 single crystals”, Phys. Rev. B74, 035103 (2006). 10.1103/PhysRevB.74.035103Search in Google Scholar

[51] A. Siegaman, Lasers, University Science Books, Mill Valley, 1986. Search in Google Scholar

[52] W. Koechner, Solid State Laser Engineering, Springer, Berlin, Heidelebrg, 1999. 10.1007/978-3-662-14219-6Search in Google Scholar

[53] E.J. Grace, G.H. New, and P.M.W. French, “Simple ABCD matrix treatment for transversely varying saturable gain”, Opt. Lett. 26, 1776–1778 (2001). http://dx.doi.org/10.1364/OL.26.00177610.1364/OL.26.001776Search in Google Scholar

[54] J.K. Jabczyński, J. Kwiatkowski, and W. Żendzian, “Modelling of beam width in passively Q-switched end-pumped lasers”, Opt. Express 11, 552–559 (2003). Search in Google Scholar

[55] M.E. Innocenzi, H.T. Yura, C.L. Fincher, and R.A. Fields, “Thermal modelling of continuous-wave end-pumped solid-state lasers”, Appl. Phys. Lett. 56, 1831–1833 (1990). http://dx.doi.org/10.1063/1.10308310.1063/1.103083Search in Google Scholar

[56] L. Gorajek, “Investigation and optimization of tunable thulium laser”, Master Thesis, Military University of Technology, Warsaw, 2008. (in Polish) Search in Google Scholar

[57] J.K. Jabczyński, W. Żendzian, J. Kwiatkowski, H. Jelinkova, J. Sulc, and M. Nemec, “Actively Q-switched, diode pumped thulium laser”, Laser Phys. Lett. 4, 863–867 (2007). http://dx.doi.org/10.1002/lapl.20071007110.1002/lapl.200710071Search in Google Scholar

[58] J.K. Jabczyński, L. Gorajek, W. Żendzian, J. Kwiatkowski, H. Jelinkova, J. Sulc, and M. Nemec, “High repetition rate, high peak power, diode pumped Tm:YLF laser”, Laser Phys. Lett. 5, 1–44 (2008). http://dx.doi.org/10.1002/lapl.20089000510.1002/lapl.200890005Search in Google Scholar

Published Online: 2009-10-23
Published in Print: 2009-12-1

© 2009 SEP, Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 10.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11772-009-0011-1/html
Scroll to top button