Skip to main content
Log in

New lectins from aspergilli and their carbohydrate specificity

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Lectin activity was assessed in sixteen Aspergillius species using human A, B, O, AB, rabbit, goat, pig and sheep erythrocytes. Neuraminidase and protease treated blood group O erythrocytes were also used to evaluate lectin activity from all the cultures unable to agglutinate native red blood cells. Lectin activity was revealed from Aspergillus acristatus, A. gorakhpurensis, A. panamensis and A. carbonarius extracts, while undiluted extract of A. fischeri showed weak haemagglutination. Lectin activity was expressed after 5 days of growth by A. acristatus, A. gorakhpurensis, A. panamensis and A. carbonarius and after 8 days of cultivation a sharp decline in lectin activity was observed. Higher titres were observed from these species with enzymatically modified blood type O erythrocytes. A variety of carbohydrates were used to study their minimum inhibitory concentration capable of inhibiting haemagglutination. Porcine stomach mucin was found to be the most potent inhibitor of all the lectins. A. gorakhpurensis lectin showed high specificity for chondroitin-6-sulphate and N-acetyl-D-galactosamine. Significant specificity for L-fucose, D-arabinose and 2-deoxy-D-ribose was identified with A. panamensis lectin. Low concentrations of 0.625 mM of D-galactosamine HCl and 0.12 mg/mL of chondroitin-6-sulphate were found optimal to prevent haemagglutination of A. carbonarius extract. A. carbonarius lectin was partially purified 2.75-fold using ammonium sulphate precipitation, dialysis and ultrafiltration. It was found to be stable upto 40°C and within the pH range of 7.0–8.0. Lectin activity was not affected by guanidine-HCl, while it was reduced to half after incubation with urea and thiourea after 24 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PBS:

phosphate buffered saline

MIC:

minimum inhibitory concentration

NI:

non-inhibitory

IU:

international units of enzyme

References

  • Albores S., Mora P., Cerdeiras M.P. & Fraguas L.F. 2013. Screening for lectins from basidiomycetes and isolation of Punctularia atropurpurascens lectin. J. Basic Microbiol. 53: 1–8.

    Article  Google Scholar 

  • Barak R., Elad Y., Mirelman D. & Chet I. 1985. Lectins: a possible basis for specific recognition in the interaction of Trichoderma and Sclerotium rolfsii. Phytopathology 75: 458–462.

    Article  CAS  Google Scholar 

  • Bhowal J., Guha A.K. & Chatterjee B.P. 2005. Purification and molecular characterization of a sialic acid specific lectin from the phytopathogenic fungus Macrophomina phaseolina. Carbohydr. Res. 340: 1973–1982.

    Article  PubMed  CAS  Google Scholar 

  • Cabanesa F.J., Accensi F., Bragulat M.R., Abarca M.L., Castella G., Minguez S. & Pons A. 2002. What is the source of ochratoxin A in wine? Int. J. Food Microbiol. 79: 213–215.

    Article  Google Scholar 

  • Chabasse D. & Robert R. 1986. Detection of lectin from Chrysosporium keratinophilum (Frey) Carmichael and Anixiopsis stercoraria (Hansen) Hansen by inhibition of haemagglutination. Ann. Inst. Pasteur Microbiol. 137B: 187–193.

    Article  PubMed  CAS  Google Scholar 

  • Devitashvili E., Kopanadze E., Kachlishvili E., Khardziani T. & Elisashvili V. 2008. Evaluation of higher basidiomycetes mushroom lectin activity in submerged and solid-state fermentation of agro-industrial residues. Int. J. Med. Mushrooms 10: 171–179.

    Article  Google Scholar 

  • Francis F., Jaber K., Colinet F., Portetelle D. & Haubruge E. 2011. Purification of a new fungal mannose-specific lectin from Penicillium chrysogenum and its aphidicidal properties. Fungal Biol. 115: 1093–1099.

    Article  PubMed  CAS  Google Scholar 

  • Han J.W., Yoon K.S., Jung M.G., Chah K.H. & Kim G.H. 2012. Molecular characterization of a lectin, BPL-4, from the marine green alga Bryopsis plumosa (Chlorophyta). Algae 27: 55–62.

    Article  CAS  Google Scholar 

  • Horibe M., Kobayashi Y., Dohra H., Morita T., Murata T., Usui T., Nakamura-Tsuruta S., Kamei M., Hirabayashi J., Matsuura M., Yamada M., Saikawa Y., Hashimoto K., Nakata M. & Kawagishi H. 2010. Toxic isolectins from the mushroom Boletus venenatus. Phytochemistry 71: 648–657.

    Article  PubMed  CAS  Google Scholar 

  • Kawagishi H., Nomura A., Mizuno T., Kimura A. & Chiba S. 1990. Isolation and characterization of a lectin from Grifola frondosa fruiting bodies. Biochim. Biophys. Acta 1034: 247–252.

    Article  PubMed  CAS  Google Scholar 

  • Kawagishi H., Wasa T., Murata T., Usui T., Kimura A. & Chiba S. 1996. Two N-acetyl-D-galactosamine-specific lectins from Phaeolepiota aurea. Phytochemistry 41: 1013–1016.

    Article  PubMed  CAS  Google Scholar 

  • Kellens J.T.C. & Peumans W.J. 1991. Developmental accumulation of lectin in Rhizoctonia solani: a potential role as a storage protein. J. Gen. Microbiol. 136: 2489–2495.

    Google Scholar 

  • Khan F., Ahmad A. & Khan M.I. 2007. Purification and characterization of a lectin from endophytic fungus Fusarium solani having complex sugar specificity. Arch. Biochem. Biophys. 457: 243–251.

    Article  PubMed  CAS  Google Scholar 

  • Khan F. & Khan M.I. 2011. Fungal lectins: current molecular and biochemical perspectives. Int. J. Biol. Chem. 5: 1–20.

    Article  CAS  Google Scholar 

  • Kobayashi Y., Kobayashi K., Umehara K., Dohra H., Murata T., Usui T. & Kawagishi H. 2004. Purification, characterization, and sugar binding specificity of an N-glycolylneuraminic acidspecific lectin from the mushroom Chlorophyllum molybdites. J. Biol. Chem. 279: 53048–53055.

    Article  PubMed  CAS  Google Scholar 

  • Liu Q., Wang H. & Ng T.B. 2006. First report of a xylosespecific lectin with potent hemagglutinating, antiproliferative and anti-mitogenic activities from a wild ascomycete mushroom. Biochim. Biophys. Acta 1760: 1914–1919.

    Article  PubMed  CAS  Google Scholar 

  • Lowry O.H., Rosebrough N.J., Farr A.L. & Randall R.J. 1951. Protein estimation with folin-phenol reagent. J. Biol. Chem. 193: 265–275.

    PubMed  CAS  Google Scholar 

  • Matsumara K., Higashida K., Ishida H., Hata Y., Yamamoto K., Masaki S., Mizuno-Horikwa Y., Wang X., Miyoshi E., Gu J. & Tanigushi N. 2007. Carbohydrate binding specificity of a fucose-specific lectin from Aspergillus oryzae: a novel probe for core fucose. J. Biol. Chem. 282: 15700–15708.

    Article  Google Scholar 

  • Mikiashvili N.A., Elisashvili V.I., Wasser S.P. & Nevo E. 2006. Comparative study of lectin activity of higher basidiomycetes. Int. J. Med. Mushrooms 8: 31–38.

    Article  CAS  Google Scholar 

  • Mwafaida J.M., Kobayashi Y., Kawagishi H. & Hyakumachi M. 2004. Lectin variation in members of Rhizoctonia species. Microbes Environ. 19: 227–235.

    Article  Google Scholar 

  • Oguri S., Ando A. & Nagata Y. 1996. A novel developmental stage-specific lectin of the basidiomycete Pleurotus cornucopiae. J. Bacteriol. 178: 5692–5698.

    PubMed  CAS  Google Scholar 

  • Otta Y., Amano K., Nishiyama K., Ando A., Ogawa S. & Nagata Y. 2002. Purification and properties of a lectin from ascomycete mushroom, Ciborinia camelliae. Carbohydr. Res. 340: 1973–1982.

    Google Scholar 

  • Pajic I.I., Kljajic Z.Z., Dogovic N.N., Sladic D.D., Juranic Z.Z. & Gasic M.J. 2002. A novel lectin from the sponge Haliclona cratera: isolation, characterization and biological activity. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 132: 213–221.

    Article  PubMed  Google Scholar 

  • Rosen S., Ek B., Rask L. & Tunlid A. 1992. Purification and characterization of a surface lectin from the nematode-trapping fungus Arthrobotrys oligospora. J. Gen. Microbiol. 138: 2663–2672.

    Article  PubMed  CAS  Google Scholar 

  • Rouf R., Tiralongo E., Krahl A., Maes K., Spaan L., Wolf S., May T.W. & Tiralongo J. 2011. Comparative study of haemagglutination and lectin activity in Australian medicinal mushrooms. Int. J. Med. Mushrooms 13: 493–504.

    Article  PubMed  Google Scholar 

  • Shimokawa M., Fukudome A., Yamashita R., Minami Y., Yagi F., Tateno H. & Hirabayashi J. 2012. Characterization and cloning of GNA-like lectin from the mushroom Marasmius oreades. Glycoconj. J. 29: 457–465.

    Article  PubMed  CAS  Google Scholar 

  • Singh R.S., Bhari R. & Kaur H.P. 2010a. Mushroom lectins: current status and future perspectives. Crit. Rev. Biotechnol. 30: 99–126.

    Article  PubMed  CAS  Google Scholar 

  • Singh R.S., Bhari R. & Kaur H.P. 2011a. Current trends of lectins from microfungi. Crit. Rev. Biotechnol. 31: 193–210.

    Article  PubMed  CAS  Google Scholar 

  • Singh R.S., Bhari R., Kaur H.P. & Vig M. 2010d. Purification and characterization of a novel thermostable mycelial lectin from Aspergillus terricola. Appl. Biochem. Biotechnol. 162:1339–1349.

    Article  PubMed  CAS  Google Scholar 

  • Singh R.S., Bhari R. & Rai J. 2010b. Further screening of Aspergillus species for occurrence of lectins and their partial characterization. J. Basic Microbiol. 50: 90–97.

    Article  PubMed  CAS  Google Scholar 

  • Singh R.S., Bhari R., Rana V. & Tiwary A.K. 2011b. Immunomodulatory and therapeutic potential of a mycelial lectin from Aspergillus nidulans. Appl. Biochem. Biotechnol. 165: 624–638.

    Article  PubMed  CAS  Google Scholar 

  • Singh R.S., Bhari R., Singh J. & Tiwary A.K. 2011c. Purification and characterization of a mucin-binding mycelia lectin from Aspergillus nidulans with potent mitogenic activity. World J. Microbiol. Biotechnol. 27: 547–554.

    Article  CAS  Google Scholar 

  • Singh R.S., Bhari R. & Tiwary A.K. 2010c. Optimization of culture conditions, partial purification and characterization of a new lectin from Aspergillus nidulans. Romanian Biotechnol. Lett. 15: 4990–4999.

    CAS  Google Scholar 

  • Singh R.S., Sharma S., Kaur G. & Bhari R. 2009a. Screening of Penicillium species for occurrence of lectins and their characterization. J. Basic Microbiol. 49: 471–476.

    Article  PubMed  CAS  Google Scholar 

  • Singh R.S., Thakur G. & Bhari R. 2009b. Optimization of culture conditions and characterization of a new lectin from Aspergillus niger. Indian J. Microbiol. 49: 219–222.

    Article  PubMed  CAS  Google Scholar 

  • Singh R.S., Tiwary A.K. & Bhari R. 2008. Screening of Aspergillus species for occurrence of lectins and their characterization. J. Basic Microbiol. 48: 112–117.

    Article  PubMed  Google Scholar 

  • Suzuki T., Sugiyama K., Hirai H., Ito H., Morita T., Dohra H., Murata T., Usui T., Tateno H., Hirabayashi J., Kobayashi Y. & Kawagishi H. 2012. Mannose-specific lectin from the mushroom Hygrophorus russula. Glycobiology 22: 616–629.

    Article  PubMed  CAS  Google Scholar 

  • Swamy B.M., Bhat A.G., Hegde G.V., Naik R.S., Kulkarni S. & Inamdar S.R. 2004. Immunolocalization and functional role of Sclerotium rolfsii lectin in development of fungus by interaction with its endogenous receptor. Glycobiology 14: 951–957.

    Article  PubMed  CAS  Google Scholar 

  • Swamy B.M., Hegde G.V., Naik R.S. & Inamdar S.R. 1999. Sclerotium rolfsii lectin recognizes Galβ1,3GalNAc containing glycopeptides. INTERLEC 18, University of Portsmouth, Portsmouth, UK, July 27–31, abstract.

    Google Scholar 

  • Tronchin G., Ensault K., Sanchez M., Larcher G., Leblond A.M. & Philippe J. 2002. Purification and partial characterization of a 32-kilodalton sialic acid specific lectin from Aspergillus fumigatus. Infect. Immun. 70: 6891–6895.

    Article  PubMed  CAS  Google Scholar 

  • Wang H. & Ng T.B. 2005. First report of an arabinose-specific fungal lectin. Biochem. Biophys. Res. Commun. 337: 621–625.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram S. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R.S., Kaur, H.P. & Singh, J. New lectins from aspergilli and their carbohydrate specificity. Biologia 69, 15–23 (2014). https://doi.org/10.2478/s11756-013-0293-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-013-0293-0

Key words

Navigation