Skip to main content
Log in

In vitro regeneration of Persian poppy (Papaver bracteatum)

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Persian poppy (Papaver bracteatum Lindl.) is an important commercial source of medicinal opiates and related compounds. In this research, calli were induced from seeds, roots, cotyledons and hypocotyls of P. bracteatum at a high efficiency. The optimized callus induction media consisted of the Murashige and Skoog (MS) basic media supplemented with 1.0 mg/L 2, 4-dichlorophenoxyacetic acid (2,4-D), 0.1 mg/L kinetin and 15 mg/L ascorbic acid. The concentrations of 2,4-D and ascorbic acid were found critical to callus induction and proliferation. Subsequent subcultures resulted in excellent callus proliferation. Ascorbic acid at concentration 15 mg/L increased the callus proliferation significantly. Maximum callus growth was achieved when the explants were incubated at 25°C. MS salts at full strength were found inhibitory for callus induction, while ľ MS salts were found to favor callus induction. Shoot regeneration of calli in vitro was achieved on ľ MS medium containing 0.5 mg/L benzylamine purine and 1.0 mg/L naphthalene acetic acid. Analysis of alkaloid extracts from Persian poppy tissues by high-performance liquid chromatography showed that thebaine accumulated in the tissues of plants. The thebaine alkaloid profile of the Persian poppy is a well-defined model to evaluate the potential for metabolic engineering of thebaine production in P. bracteatum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BA:

benzylamine purine

2,4-D:

2,4-dichlorophenoxyacetic acid

DMR:

Duncan’s multiple range

HPLC:

high-performance liquid chromatography

MS:

Murashige and Skoog

NAA:

α-naphthalene acetic acid

SD:

standard deviation

References

  • Baskaran P., Raja Rajeswari B. & Jayabalan N. 2006. Development of an in vitro regeneration system in sorghum [Sorghum bicolor (L.) Moench] using root transverse thin cell layers (tTCLs). Turk. J. Bot. 30: 1–9.

    Google Scholar 

  • Bentley K.W. 1971. The morphine alkaloids, pp. 3–163. In: Manske R.H.F. (ed.), The Alkaloids; Chemistry and Physiology, Vol. 13, Academic Press, New York.

    Google Scholar 

  • Constable F. 1990. Medicinal plant biotechnology. Planta Med. 56: 421–425.

    Article  Google Scholar 

  • De Jong A.J., Schmidt E.D.L. & De Vriess S.C. 1993. Early events in higher plant embryogenesis. Plant Mol. Biol. 22: 367–377.

    Article  PubMed  Google Scholar 

  • Dev S. 1997. Ethnotherapeutics and mordern drug development: the potential of Auerveda. Curr. Sci. 73: 909–928.

    CAS  Google Scholar 

  • Gamborg O.L., Miller R.A. & Ojima K. 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50: 151–158.

    Article  CAS  PubMed  Google Scholar 

  • Gang Y.Y., Du G.S., Shi D.J., Wang M.Z., Li X.D. & Hua Z.L. 2003. Establishment of in vitro regeneration system of the Atrichum mosses. Acta Bot. Sin. 45: 1475–1480.

    Google Scholar 

  • Hazra S., Sathaye S.S. & Mascarenhas S.F. 1989. Direct somatic embryogenesis from peanut (Arachis hypogaea L.). BioTechnology 7: 949–951.

    Article  Google Scholar 

  • Ikuta A. & Itokawa H. 1988. Alkaloids of tissue cultures of Nandina domestica. Phytochemistry 27: 2143–2145.

    Article  CAS  Google Scholar 

  • Ikuta A., Syono K. & Furaya T. 1974. Alkaloids of callus tissues and redifferentiated plantlets in the Papaveraceae. Phytochemistry 13: 2175–2179.

    Article  CAS  Google Scholar 

  • Ilahi I. & Ghauri E.G. 1994. Regeneration in cultures of Papaver bracteatum as influenced by growth hormones and temperature. Plant Cell Tissue Organ Cult. 38: 81–83.

    Article  CAS  Google Scholar 

  • Komamine A., Kawara R., Matsumoto M., Sunabori S., Toya T. & Fujimura T. 1992. Mechanisms of somatic embryogenesis in cell cultures: physiology, biochemistry, and molecular biology. In Vitro Cell. Dev. Biol. 28P: 11–14.

    CAS  Google Scholar 

  • Kutchan T.M., Ayabe S. & Coscia C.J. 1985. Cytodifferentiation and Papaver alkaloid accumulation, pp. 281–294. In: Phillipson J.D., Roberts M.F. & Zenk M.H. (eds), The Chemistry and Biology of Isoquinoline Alkaloids, Springer-Verlag, Berlin and New York.

    Google Scholar 

  • Mendelsohn R. & Balick, M. 1994. The value of undiscovered pharmaceuticals in tropical forests. Econ. Bot. 49: 223–228.

    Google Scholar 

  • Michalczuk L., Cooke T.J. & Cohen J.D. 1992. Auxin levels at different stages of carrot somatic embryogenesis. Phytochemistry 31: 1097–1103.

    Article  CAS  Google Scholar 

  • Murashige T. & Skoog F. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  • Nakagawa K., Fukui H. & Tabata M. 1986. Hormonal regulation of berberine production in cell suspension cultures of Thalictrum minus. Plant Cell. Rep. 5: 69–71.

    Article  CAS  Google Scholar 

  • Osol A. & Pratt R. 1973. Dispensatory of the United States of America. Lippincott, Philadelphia, PA, 1292 pp.

    Google Scholar 

  • Phillipson J.D. 1983. Intraspecific variation and alkaloids of Papaver species. Planta Med. 48: 187–192.

    Article  CAS  PubMed  Google Scholar 

  • Rao A.Q., Hussain S.S., Shahzad M.S., Bokhari S.Y.A., Raza M.H., Rakha A., Majeed A., Shahid A.A., Saleem Z., Husnain T. & Riazuddin S. 2006. Somatic embryogenesis in wild relatives of cotton (Gossypium spp.). J. Zhejiang Univ. Sci. B 7: 291–298.

    Article  PubMed  Google Scholar 

  • Rostampour S., Hashemi Sohi H., Jourabchi E. & Ansari E. 2009. Influence of Agrobacterium rhizogenes on induction of hairy roots and benzylisoquinoline alkaloids production in Persian poppy (Papaver bracteatum Lindl.): preliminary report. World J. Microbiol. Biotechnol. 25: 1807–1814.

    Article  Google Scholar 

  • Santacy F. 1970. Papaveraceae alkaloids, pp. 333–454. In: Manske R.H.F (ed.), The Alkaloids; Chemistry and Physiology, Academic Press, New York.

    Google Scholar 

  • Skoog F. & Armstrong D.J. 1970. Cytokinin annual review. Plant Physiol. 21: 359–384.

    Article  CAS  Google Scholar 

  • Tyler R.T., Eilert U., Rijinders C.O.M., Roewer I.A., McNabb D.K. & Kurz W.G.W. 1989. Studies on benzophenanthridine alkaloid production in elicited cultured cell cultures of Papaver somniferum, pp. 200–207. In: Kurz W.G.W. (ed.), Primary and Secondary Metabolism of Plant Cell Cultures, Spring-Verlag, Berlin.

    Google Scholar 

  • Wieczorek U., Nagakura N., Sund C., Jendrzejewski S. & Zenk, M.H. 1986. Radioimmunoassay determination of the six opium alkaloids. Phytochemistry 25: 2639–2646.

    Article  CAS  Google Scholar 

  • Yang J, Gong Z.C. & Tan X. 2008. Induction of callus and extraction of alkaloid from Yi Mu Cao (Leonurus heterophylus Sw.) culture. Afr. J. Biotechnol. 7: 1157–1162.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rostampour, S., Sohi, H.H. & Dehestani, A. In vitro regeneration of Persian poppy (Papaver bracteatum). Biologia 65, 647–652 (2010). https://doi.org/10.2478/s11756-010-0079-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-010-0079-6

Key words

Navigation