Skip to main content
Log in

Molecular cloning, overexpression and characterization of the raw-starch-digesting α-amylase of Bacillus amyloliquefaciens

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Raw starch is the most abundant source of glucose in the world. Therefore, finding enzymes capable of digesting raw starch would find high industrial demand. The α-amylase gene of Bacillus amyloliquefaciens ATCC 23842 was amplified, cloned and overexpressed in Escherichia coli BL21 (DE3) cells. The recombinant enzyme was purified to apparent homogeneity using ion exchange and gel filtration chromatography. The raw-starch digestibility of the purified enzyme was characterized by studying the hydrolysis and adsorption rate on a variety of raw starches (potato, cassava, corn, wheat and rice). The raw-starch digestion was further confirmed by scanning electron microscopy studies, which revealed an effective rate of hydrolysis. The kinetic studies revealed a relatively low K m of 2.76 mg/mL, exhibiting high affinity towards the soluble starch as the most preferred substrate and the inhibition kinetic studies revealed a high K i value (350 mM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CBM:

carbohydrate-binding module

IPTG:

isopropyl β-D-thiogalactopyranoside

LB:

Luria Bertani

SBD:

starch-binding module

SEM:

scanning electron microscopy

References

  • Abe A., Tonozuka T., Sakano Y. & Kamitori S. 2004. Complex structures of Thermoactinomyces vulgaris R-47 α-amylase 1 with maltooligosaccharides demonstrate the role of domain N acting as a starch-binding domain. J Mol Biol. 335: 811–822.

    Article  CAS  PubMed  Google Scholar 

  • Ashikari T., Nakamura N., Tanaka Y., Kiuchi N., ShiBano Y., Tanaka T., Amachi T. & Yoshizumi H. 1986. Rhizopus rawstarch-degrading glucoamylase: its cloning and expression in yeast. Agric. Biol. Chem. 50: 957–964.

    CAS  Google Scholar 

  • Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Sayers E.W. 2010. GenBank. Nucleic Acids Res. 38 (Database Issue): D46–D51.

    Article  CAS  Google Scholar 

  • Bibel M., Brettl C., Gosslar U., Kriegshaeuser G. & Liebl W. 1998. Isolation and analysis of genes for amylolytic enzymes of the hyperthermophilic bacterium Thermotoga maritima. FEMS Microbiol Lett. 158: 9–15.

    Article  CAS  PubMed  Google Scholar 

  • Borgia P.T. & Campbell L.L. 1978. α-Amylase from five strains of Bacillus amyloliquefaciens: evidence for identical primary structures. J. Bacteriol. 134: 389–393.

    CAS  PubMed  Google Scholar 

  • Champreda V., Kanokratana P., Sriprang R., Tanapongpipat S. & Eurwilaichitr L. 2007. Purification, biochemical characterization and gene cloning of a new extracellular thermotolerant and glucose tolerant maltooligosaccharide forming α-amylase from an endophytic Fusicoccum sp. BCC 4124. Biosci. Biotechnol. Biochem. 71: 2010–2020.

    Article  CAS  PubMed  Google Scholar 

  • Christiansen C., Hachem M.A., Janecek S., Vikso-Nielsen A., Blennow A. & Svensson B. 2009. The carbohydrate-binding module family 20 — diversity, structure, and function. FEBS J. 276: 5006–5029.

    Article  CAS  PubMed  Google Scholar 

  • Chung H. & Friedberg F. 1980. Sequence of the N-terminal half of Bacillus amyloliquefaciens α-amylase. Biochem. J. 185: 387–395.

    CAS  PubMed  Google Scholar 

  • Dauter Z., Dauter M., Brzozowski A.M., Christensen S., Borchert T.V., Beier L., Wilson K.S. & Davies G.J. 1999. X-ray structure of Novamyl, the five-domain ‘maltogenic’ α-amylase from Bacillus stearothermophilus: maltose and acarbose complexes at 1.7 Å resolution. Biochemistry 38: 8385–8392.

    Article  CAS  PubMed  Google Scholar 

  • Demirkan E.S., Mikami B., Adachi M., Higasa T. & Utsumi. 2005 α-Amylase from B. amyloliquefaciens: purification, characterization, raw starch degradation and expression in E. coli. Process Biochem. 40: 2629–2636.

    Article  CAS  Google Scholar 

  • Detera S.D. & Friedberg F. 1979. Molecular weight of B. subtilis α-amylase derived from chemical studies. Int. J. Pept. Protein Res. 14: 364–372.

    Article  CAS  PubMed  Google Scholar 

  • Gangadharan D., Nampoothiri K.M., Sivaramakrishnan S. & Pandey A. 2009. Biochemical characterization of raw-starchdigesting α-amylase purified from Bacillus amyloliquefaciens. Appl. Biochem. Biotechnol. 158: 653–662.

    Article  CAS  PubMed  Google Scholar 

  • Gangadharan D., Sivaramakrishnan S., Nampoothiri K.M. & Pandey A. 2006. Solid culturing of Bacillus amyloliquefaciens for α-amylase production. Food Technol. Biotechnol. 44: 269–274.

    CAS  Google Scholar 

  • Gangadharan D., Sivaramakrishnan S., Nampoothiri K.M., Sukumaram R.K. & Pandey A. 2008. Response surface methodology for the optimization of α-amylase production by Bacillus amyloliquefaciens. Bioresource Technol. 99: 4597–4602.

    Article  CAS  Google Scholar 

  • Gobius K.S. & Pemberton J.M. 1988. Molecular cloning, characterization, and nucleotide sequence of an extracellular amylase gene from Aeromonas hydrophila. J. Bacteriol. 170: 1325–1332.

    CAS  PubMed  Google Scholar 

  • Hamilton L.M., Kelly C.T. & Fogarty W.M. 1998. Raw starch degradation by the non-raw starch-adsorbing bacterial α- amylase of Bacillus sp. IMD 434. Carbohyd Res. 314: 251–257.

    Article  CAS  Google Scholar 

  • Hayashida S., Teramoto Y., Inoue T. & Mitsuiki S. 1990. Occurrence of an affinity site apart from the active site on the raw-starch-digesting but non-raw-starch-adsorbable Bacillus subtilis 65 α-amylase. Appl. Environ. Microbiol. 56: 2584–2586.

    CAS  PubMed  Google Scholar 

  • Hyun H.H. & Zekius J.G. 1985. Biochemical characterization of thermostable extracellular β-amylase from Clostridium thermosulfurogenes. Appl. Environ. Microbiol. 49: 1162–1167.

    CAS  PubMed  Google Scholar 

  • Iefuji H., Chino M., Kato M. & Iimura Y. 1996. Raw-starchdigesting and thermostable α-amylase from yeast Cryptococcus sp. S-2: purification, characterization, cloning and sequencing. Biochem. J. 318: 989–996.

    CAS  PubMed  Google Scholar 

  • Itkor P., Tsukagoshi N. & Udaka S. 1989. Purification and properties of divalent cation-dependent raw-starch-digesting α-amylase from Bacillus sp. B1018. J. Ferment. Bioeng. 68: 247–251.

    Article  CAS  Google Scholar 

  • Janecek S. 1997. α-Amylase family: molecular biology and evolution. Prog. Biophys. Mol. Biol. 67: 67–97.

    Article  CAS  PubMed  Google Scholar 

  • Jeang C.L., Chen L.S., Chen M.Y. & Shiau R.J. 2002. Cloning of a gene encoding raw-starch-digesting amylase from a Cytophaga sp. and its expression in Escherichia coli. Appl. Environ. Microbiol. 68: 3651–3654.

    Article  CAS  PubMed  Google Scholar 

  • Kelly C.T., McTigue M.A., Doyle E.M. & Fogarty W.M. 1995. The raw starch degrading amylase of Bacillus sp. IMD 370. J. Ind. Microbiol. Biotechnol. 15: 446–448.

    CAS  Google Scholar 

  • Lineweaver H. & Burk D. 1934. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658–666.

    Article  CAS  Google Scholar 

  • Liu Y., Shen W., Shi G. & Wang Z. 2010. Role of the calciumbinding residues Asp231, Asp233, and Asp438 in α-amylase of Bacillus amyloliquefaciens as revealed by mutational analysis. Curr. Microbiol. 60: 162–166.

    Article  CAS  PubMed  Google Scholar 

  • Lo H.F., Lin L.L., Chiang W.Y., Chie M.C., Hsei W.H. & Chang C.T. 2002. Deletion analysis of the C-terminal region of the α-amylase of Bacillus sp. strain TS-23. Arch. Microbiol. 178: 115–123.

    Article  CAS  PubMed  Google Scholar 

  • Lowry O.H., Rosebrough N.J., Farr A.L. & Randall R.J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 263–275.

    Google Scholar 

  • MacGregor A.W., Bazin S.L. & Izydorczyk M.S. 2002. Gelatinisation characteristics and enzyme susceptibility of different types of barley starch in the temperature range 48–72°C. J. Inst. Brew. 108: 43–47.

    CAS  Google Scholar 

  • Mikami B., Adachi M., Kage T., Sarikaya E., Nanmori T., Shinke R. & Utsumi S. 1999. Structure of raw starch-digesting Bacillus cereus β-amylase complexed with maltose. Biochemistry 38: 7050–7061.

    Article  CAS  PubMed  Google Scholar 

  • Miller G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–429.

    Article  CAS  Google Scholar 

  • Mitsuiki S., Mukaea K., Sakai M., Goto M., Hayashida S. & Furukawa K. 2005. Comparative characterization of raw starch hydrolyzing α-amylases from various Bacillus strains. Enzyme Microb. Technol. 37: 410–416.

    Article  CAS  Google Scholar 

  • Okolo B.N., Ezeogu L.I. & Mba C.N. 1995. Production of raw starch digestive amylase by Aspergillus niger grown on native starch sources. J. Sci. Food Agric. 69: 109–115.

    Article  CAS  Google Scholar 

  • Palva I., Pettersson R.F., Kalkkinen N., Lehtovaara P., Sarvas M., Soderlund H., Takkinen K., & Kaariainen L. 1981. Nucleotide sequence of the promoter and NH2-terminal signal peptide region of the α-amylase gene from Bacillus amyloliquefaciens. Gene 15: 43–51.

    Article  CAS  PubMed  Google Scholar 

  • Penninga D., van der Veen B.A., Knegtel R.M.A., van Hijum S.A.F.T., Rozeboom H.J., Kalk, K.H., Dijstra B.W. & Dijkhuizen L. 1996. The raw starch binding domain of cyclodextrin glycosyltransferase from Bacillus circulans strain 251. J. Biol. Chem. 271: 32777–32784.

    Article  CAS  PubMed  Google Scholar 

  • Quigley T.A., Kelly C.T., Doyle E.M. & Fogarty W.M. 1998. Patterns of raw starch digestion by the glucoamylase of Cladosporium gossypiicola ATCC 38026. Enzyme Microb. Technol. 33: 677–681.

    CAS  Google Scholar 

  • Sambrook J., Fritsch F.E. & Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, 2nd Edn. Cold Spring Harbor, Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Sivaramakrishnan S., Gangadharan D., Nampoothiri K.M. & Pandey A. 2006. α-Amylases from microbial sources — an overview on recent developments. Food Technol. Biotechnol. 44: 173–184.

    CAS  Google Scholar 

  • Sorimachi K., Le Gal Coeffet M.F., Williamson G., Archer D.B. & Williamson M.P. 1997 Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to β-cyclodextrin. Structure 5: 647–661.

    Article  CAS  PubMed  Google Scholar 

  • Southall S.M., Simpson P.J., Gilbert H.J., Williamson G. & Williamson M.P. 1999. The starch-binding domain from glucoamylase disrupts the structure of starch. FEBS Lett. 447: 58–60.

    Article  CAS  PubMed  Google Scholar 

  • Southgate V.J., Steyn R.J.C., Pretorius I.S. & Vuuren H.J.J.V. 1993. Expression and secretion of Bacillus amyloliquefaciens α-amylase by using the yeast pheromone CL-factor promoter and leader sequence in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 59: 1253–1258.

    CAS  PubMed  Google Scholar 

  • Svensson B., Jespersen H., Sierks M.R. & MacGregor E.A. 1989. Sequence homology between putative raw-starch binding domains from different starch-degrading enzymes. Biochem. J. 264: 309–311.

    CAS  PubMed  Google Scholar 

  • Takahashi T., Kato K., Ikegami Y. & Irie M. 1985. Different behavior toward raw starch of three forms of glucoamylase from a Rhizopus sp. J. Biochem. 98: 663–671.

    CAS  PubMed  Google Scholar 

  • Takkinen K., Pettersson R.F., Kalkkinen N., Palva I., Soderlund H. & Kaariainen L. 1983. Amino acid sequence of α-amylase from Bacillus amyloliquefaciens deduced from the nucleotide sequence of the cloned gene. J. Biol. Chem. 258: 1007-1013.

    Google Scholar 

  • van der Maarel M.J.E.C., van der Veen B., Uitdehaag J.C.M., Leemhuis H. & Dijkhuizen L. 2002. Properties and applications of starch-converting enzymes of the α-amylase family. J. Biotechnol. 94: 137–155.

    Article  PubMed  Google Scholar 

  • Vidilaseris K., Hidayat K., Retnoningrum D.S., Nurachman Z., Noer A.S. & Natalia D. 2009. Biochemical characterization of a raw starch degrading α-amylase from the Indonesian marine bacterium Bacillus sp. ALSHL3. Biologia 64: 1047–1052.

    Article  CAS  Google Scholar 

  • Yetti M., Nazamid B.S., Roselina K. & Abdulkarim S.M. 2007. Improvement of glucose production by raw starch degrading enzyme utilizing acid-treated sago starch as substrate. ASEAN Food J. 14: 83–90.

    Google Scholar 

  • Yuuki T., Nomura T., Tezuka H., Tsuboi A., Yamagata H., Tsukagoshi N. & Udaka S. 1985. Complete nucleotide sequence of a gene coding for heat- and pH-stable α-amylase of Bacillus licheniformis: comparison of the amino acid sequences of three bacterial liquefying α-amylases deduced from the DNA sequences. J. Biochem. 98: 1147–1156.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Madhavan Nampoothiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gangadharan, D., Ramachandran, P., Paramasamy, G. et al. Molecular cloning, overexpression and characterization of the raw-starch-digesting α-amylase of Bacillus amyloliquefaciens . Biologia 65, 392–398 (2010). https://doi.org/10.2478/s11756-010-0042-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-010-0042-6

Key words

Navigation