Skip to main content
Log in

Tyrosine 39 of GH13 α-amylase from Thermococcus hydrothermalis contributes to its thermostability

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The presented work is focused on the naturally thermostable α-amylase from the archaebacterium Thermococcus hydrothermalis. From the evolutionary point of view, the archaeal α-amylases are most closely related to plant α-amylases. In a wider sense, especially when the evolutionary trees are based on the less conserved part of their amino acid sequences (e.g. domain C succeeding the catalytic TIM-barrel), also the representatives of bacterial liquefying (Bacillus licheniformis) and saccharifying (Bacillus subtilis) α-amylases as well as the one from Thermotoga maritima should be included into the relatedness with the archaeal and plant α-amylases. Based on the bioinformatics analysis of the α-amylase from T. hydrothermalis, the position of tyrosine 39 (Y16 if the putative 23-residue long signal peptide is considered) was mutated to isoleucine (present in the α-amylase from T. maritima) by the in vitro mutagenesis. The biochemical characterization of the wild-type α-amylase and its Y39I mutant revealed that: (i) the specific activity of both enzymes was approximately equivalent (0.55 ± 0.13 U/mg for the wild-type and 0.52 ± 0.15 U/mg for the Y39I); (ii) the mutant exhibited decreased temperature optimum (from 85°C for the wild-type to 80°C for the Y39I); and (iii) the pH optimum remained the same (pH 5.5 for both enzymes). The remaining activity of the α-amylases was also tested by one-hour incubation at 80°C, 85°C, 90°C and 100°C. Since the wild-type α-amylase lost only 13% of its activity after one-hour incubation at the highest tested temperature (100°C), whereas 27% decrease was seen for the mutant Y39I under the same conditions, it is possible to conclude that the position of tyrosine 39 could contribute to the thermostability of the α-amylase from T. hydrothermalis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GH:

glycoside hydrolase

References

  • Bairoch A., Bougueleret L., Altairac S., Amendolia V., ... & Zhang J. 2009. The Universal protein resource (UniProt) 2009. Nucleic Acids Res. 37(Database issue): D169–D174.

    Google Scholar 

  • Ballschmiter M., Fütterer O. & Liebl W. 2006. Identification and characterization of a novel intracellular alkaline α-amylase from the hyperthermophilic bacterium Thermotoga maritima MSB8. Appl. Environ. Microbiol. 72: 2206–2211.

    Article  CAS  PubMed  Google Scholar 

  • Bernfeld P. 1955. Amylases, α and β. Methods Enzymol. 1: 149–158.

    Article  CAS  Google Scholar 

  • Bertoldo C. & Antranikian G. 2002. Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Curr. Opin. Chem. Biol. 6: 151–160.

    Article  CAS  PubMed  Google Scholar 

  • Cantarel B.L., Coutinho P.M., Rancurel C., Bernard T., Lombard V. & Henrissat B. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37(Database Issue): D233–D238.

    Article  CAS  PubMed  Google Scholar 

  • Da Lage J.L., Feller G. & Janecek S. 2004. Horizontal gene transfer from Eukarya to Bacteria and domain shuffling: the α-amylase model. Cell. Mol. Life Sci. 61: 97–109.

    Article  PubMed  Google Scholar 

  • Declerck N., Machius M., Joyet P., Wiegand G., Huber R. & Gaillardin C. 2002. Engineering the thermostability of Bacillus licheniformis α-amylase. Biologia 57(Suppl. 11): 203–211.

    CAS  Google Scholar 

  • Dickmanns A., Ballschmiter M., Liebl W. & Ficner R. 2006. Structure of the novel α-amylase AmyC from Thermotoga maritima. Acta Crystallogr. D Biol. Crystallogr. 62: 262–270.

    Article  PubMed  Google Scholar 

  • Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.

    Article  Google Scholar 

  • Horvathova V., Godany A., Sturdik E. & Janecek S. 2006. α-Amylase from Thermococcus hydrothermalis: re-cloning aimed at the improved expression and hydrolysis of corn starch. Enzyme Microb. Technol. 39: 1300–1305.

    Article  CAS  Google Scholar 

  • Imamura H., Fushinobu S., Yamamoto M., Kumasaka T., Jeon B.S., Wakagi T. & Matsuzawa H. 2003. Crystal structures of 4-α-glucanotransferase from Thermococcus litoralis and its complex with an inhibitor. J. Biol. Chem. 278: 19378–19386.

    Article  CAS  PubMed  Google Scholar 

  • Janecek S. 1994. Sequence similarities and evolutionary relationships of microbial, plant and animal α-amylases. Eur. J. Biochem. 224: 519–524.

    Article  CAS  PubMed  Google Scholar 

  • Janecek S. 2002. How many conserved sequence regions are there in the α-amylase family? Biologia 57(Suppl. 11): 29–41.

    CAS  Google Scholar 

  • Janecek S. 2005. Amylolytic families of glycoside hydrolases: focus on the family GH-57. Biologia 60(Suppl. 16): 177–184.

    CAS  Google Scholar 

  • Janecek S. 2008. Sequence fingerprints in the evolution of the α-amylase family, pp. 45–63. In: Park K.H. (Ed.) Carbohydrate-Active Enzymes: Structure, Function and Applications. Woodhead Publishing, Ltd., Cambridge.

    Google Scholar 

  • Janecek S., Leveque E., Belarbi A. & Haye B. 1999. Close evolutionary relatedness of α-amylases from Archaea and plants. J. Mol. Evol. 48: 421–426.

    Article  CAS  PubMed  Google Scholar 

  • Jones R.A., Jermiin L.S., Easteal S., Patel B.K. & Beacham I.R. 1999. Amylase and 16S rRNA genes from a hyperthermophilic archaebacterium. J. Appl. Microbiol. 86: 93–107.

    Article  CAS  PubMed  Google Scholar 

  • Kadziola A., Abe J., Svensson B. & Haser R. 1994. Crystal and molecular structure of barley α-amylase. J. Mol. Biol. 239:104–121.

    Article  CAS  PubMed  Google Scholar 

  • Leveque E., Haye B. & Belarbi A. 2000a. Cloning and expression of an α-amylase encoding gene from the hyperthermophilic archaebacterium Thermococcus hydrothermalis and biochemical characterisation of the recombinant enzyme. FEMS Microbiol. Lett. 186: 67–71.

    Article  CAS  PubMed  Google Scholar 

  • Leveque E., Janecek S., Belarbi A. & Haye B. 2000b. Thermophilic archaeal amylolytic enzymes. Enzyme Microb. Technol. 26: 2–13.

    Article  Google Scholar 

  • Liebl W., Stemplinger I. & Ruile P. 1997. Properties and gene structure of the Thermotoga maritima α-amylase AmyA, a putative lipoprotein of a hyperthermophilic bacterium. J. Bacteriol. 179: 941–948.

    CAS  PubMed  Google Scholar 

  • Lim J.K., Lee H.S., Kim Y.J., Bae S.S., Jeon J.H., Kang S.G. & Lee J.H. 2007. Critical factors to high thermostability of an α-amylase from hyperthermophilic archaeon Thermococcus onnurineus NA1. J. Microbiol. Biotechnol. 17: 1242–1248.

    CAS  PubMed  Google Scholar 

  • Linden A., Mayans O., Meyer-Klaucke W., Antranikian G. & Wilmanns M. 2003. Differential regulation of a hyperthermophilic α-amylase with a novel (Ca, Zn) two-metal center by zinc. J. Biol. Chem. 278: 9875–9884.

    Article  CAS  PubMed  Google Scholar 

  • Lowry O.H., Rosebrough N.I., Farr A.L. & Randall R.I. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193: 265–275.

    CAS  PubMed  Google Scholar 

  • MacGregor E.A. 2005. An overview of clan GH-H and distantly related families. Biologia 60(Suppl. 16): 5–12.

    CAS  Google Scholar 

  • MacGregor E.A., Janecek S. & Svensson B. 2001. Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim. Biophys. Acta 1546: 1–20.

    CAS  PubMed  Google Scholar 

  • Matsuura Y., Kusunoki M., Harada W. & Kakudo M. 1984. Structure and possible catalytic residues of Taka-amylase A. J. Biochem. 95: 697–702.

    CAS  PubMed  Google Scholar 

  • McCarter J.D. & Withers S.G. 1994. Mechanisms of enzymatic glycoside hydrolysis. Curr. Opin. Struct. Biol. 4: 885–892.

    Article  CAS  PubMed  Google Scholar 

  • Nelson K.E., Clayton R.A., Gill S.R., Gwinn M.L., ... & Fraser C.M. 1999. Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399: 323–329.

    Article  CAS  PubMed  Google Scholar 

  • Page R.D. 1996. TreeView: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12: 357–358.

    CAS  PubMed  Google Scholar 

  • Robert X., Haser R., Gottschalk T.E, Ratajczak F., Driguez H., Svensson B. & Aghajari N. 2003. The structure of barley α-amylase isozyme 1 reveals a novel role of domain C in substrate recognition and binding: a pair of sugar tongs. Structure 11: 973–984.

    Article  CAS  PubMed  Google Scholar 

  • Saitou N. & Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    CAS  PubMed  Google Scholar 

  • Savchenko A., Vieille C., Kang S. & Zeikus J.G. 2002. Pyrococcus furiosus α-amylase is stabilized by calcium and zinc. Biochemistry 41: 6193–6201.

    Article  CAS  PubMed  Google Scholar 

  • Seo E.S., Christiansen C., Abou Hachem M., Nielsen M.M., Fukuda K., Bozonnet S., Blennow A., Aghajari N., Haser R. & Svensson B. 2008. An enzyme family reunion — similarities, differences and eccentricities in actions on α-glucans. Biologia 63: 967–979.

    Article  CAS  Google Scholar 

  • Sivakumar N., Li N., Tang J.W., Patel B.K. & Swaminathan K. 2006. Crystal structure of AmyA lacks acidic surface and provide insights into protein stability at poly-extreme condition. FEBS Lett. 580: 2646–2652.

    Article  CAS  PubMed  Google Scholar 

  • Sivaramakrishnan S., Gangadharan D., Nampoothiri K.M., Soccol C.R. & Pandey A. 2006. α-Amylases from microbial sources — an overview on recent developments. Food Technol. Biotechnol. 44: 173–184.

    CAS  Google Scholar 

  • Tan T.C., Mijts B.N., Swaminathan K., Patel B.K. & Divne C. 2008. Crystal structure of the polyextremophilic α-amylase AmyB from Halothermothrix orenii: details of a productive enzyme-substrate complex and an N domain with a role in binding raw starch. J. Mol. Biol. 378: 852–870.

    Article  PubMed  Google Scholar 

  • Thompson J.D., Higgins D.G. & Gibson T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.

    Article  CAS  PubMed  Google Scholar 

  • Uitdehaag J.C., Mosi R., Kalk K.H., van der Veen B.A., Dijkhuizen L., Withers S.G. & Dijkstra B.W. 1999. X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the α-amylase family. Nat. Struct. Biol. 6: 432–436.

    Article  CAS  PubMed  Google Scholar 

  • van der Kaaij R.M., Janecek S., van der Maarel M.J. & Dijkhuizen L. 2007. Phylogenetic and biochemical characterization of a novel cluster of intracellular fungal α-amylase enzymes. Microbiology 153: 4003–4015.

    Article  PubMed  Google Scholar 

  • Vieille C. & Zeikus G.J. 2001. Hyperthermophilic enzymes: sources, uses and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65: 1–43.

    Article  CAS  PubMed  Google Scholar 

  • Zona R., Chang-Pi-Hin F., O’Donohue M.J. & Janecek S. 2004. Bioinformatics of the family 57 glycoside hydrolases and identification of catalytic residues in amylopullulanase from Thermococcus hydrothermalis. Eur. J. Biochem. 271: 2863–2872.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Štefan Janeček.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godány, A., Majzlová, K., Horváthová, V. et al. Tyrosine 39 of GH13 α-amylase from Thermococcus hydrothermalis contributes to its thermostability. Biologia 65, 408–415 (2010). https://doi.org/10.2478/s11756-010-0030-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-010-0030-x

Key words

Navigation