Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 15, 2013

Modeling of supercritical fluid extraction of flavonoids from Calycopteris floribunda leaves

  • Xiong Liu EMAIL logo , Dong-Liang Yang , Jia-Jia Liu , Kuan Xu and Guo-Hui Wu
From the journal Chemical Papers

Abstract

The aim of this study was to obtain flavonoids extracts from Calycopteris floribunda leaves using supercritical fluid extraction (SFE) with CO2 and a co-solvent. Pachypodol, a potential anticancer drug lead compound separated from the extracts, was examined. Classical organic solvent extraction (CE) with ethanol was performed to evaluate the high pressure method. HPLC analysis was introduced to interpret the differences between SFE and CE extracts in terms of antioxidant activity and the concentration of pachypodol. SFE kinetics and mathematical modeling of the overall extraction curves (OEC) were investigated. Evaluation of the models against experimental data showed that the Sovová model performs the best. The supercritical fluid extraction process was optimized using a central composite design (CCD), where temperature and pressure were adjusted. The optimal conditions of SFE were: pressure of 30 MPa and temperature of 35°C.

[1] Ali, H. A., Chowdhury, A. K. A., Rahman, A. K. M., Borkowski, T., Nahar, L., & Sarker, S. D. (2008). Pachypodol, a flavonol from the leaves of Calycopteris floribunda, inhibits the growth of CaCo 2 colon cancer cell line in vitro. Phytotherapy Research, 22, 1684–1687. DOI: 10.1002/ptr.2539. http://dx.doi.org/10.1002/ptr.253910.1002/ptr.2539Search in Google Scholar

[2] Andrade, K. S., Gonçalvez, R. T., Maraschin, M., Ribeiro-do-Valle, R. M., Martínez, J., & Ferreira, S. R. S. (2012). Supercritical fluid extraction from spent coffee grounds and coffee husks: Antioxidant activity and effect of operational variables on extract composition. Talanta, 88, 544–552. DOI: 10.1016/j.talanta.2011.11.031. http://dx.doi.org/10.1016/j.talanta.2011.11.03110.1016/j.talanta.2011.11.031Search in Google Scholar

[3] Bimakr, M., Rahman, R. A., Ganjloo, A., Taip, F. S., Salleh, L. M., & Sarker, M. Z. I. (2011). Optimization of supercritical carbon dioxide extraction of bioactive flavonoid compounds from spearmint (Mentha spicata L.) leaves by using response surface methodology. Food and Bioprocess Technology, 5, 912–920. DOI: 10.1007/s11947-010-0504-4. http://dx.doi.org/10.1007/s11947-010-0504-410.1007/s11947-010-0504-4Search in Google Scholar

[4] Chafer, A., Fornari, T., Berna, A., & Stateva, R. P. (2004). Solubility of quercetin in supercritical CO2 + ethanol as a modifier: measurements and thermodynamic modelling. The Journal of Supercritical Fluids, 32, 89–96. DOI: 10.1016/j.supflu.2004.02.005. http://dx.doi.org/10.1016/j.supflu.2004.02.00510.1016/j.supflu.2004.02.005Search in Google Scholar

[5] Chiu, K. L., Cheng, Y. C., Chen, J. H., Chang, C. J., & Yang, P. W. (2002). Supercritical fluids extraction of Ginkgo ginkgolides and flavonoids. The Journal of Supercritical Fluids, 24, 77–87. DOI: 10.1016/s0896-8446(02)00014-1. http://dx.doi.org/10.1016/S0896-8446(02)00014-110.1016/S0896-8446(02)00014-1Search in Google Scholar

[6] Crank, J. (1975). The mathematics of diffusion (2nd ed.). Oxford, UK: Clarendon Press. Search in Google Scholar

[7] de Lucas, A., Gracia, I., Rincón, J., & García, M. T. (2007). Solubility determination and model prediction of olive husk oil in supercritical carbon dioxide and cosolvents. Industrial & Engineering Chemistry Research, 46, 5061–5066. DOI: 10.1021/ie061153j. http://dx.doi.org/10.1021/ie061153j10.1021/ie061153jSearch in Google Scholar

[8] Huang, Z., Yang, M. J., Liu, S. F., & Ma, Q. (2011). Supercritical carbon dioxide extraction of Baizhu: Experiments and modeling. The Journal of Supercritical Fluids, 58, 31–39. DOI: 10.1016/j.supflu.2011.05.008. http://dx.doi.org/10.1016/j.supflu.2011.05.00810.1016/j.supflu.2011.05.008Search in Google Scholar

[9] Liu, J. J., Yang, D. L., Zhang, Y., Yuan, Y., Cao, F. X., Zhao, J. M., & Peng, X. B. (2009). Chemical component and antimicrobial activity of volatile oil of Calycopteris floribunda. Journal of Central South Universtiy of Technology, 16, 931–935. DOI: 10.1007/s11771-009-0155-7. http://dx.doi.org/10.1007/s11771-009-0155-710.1007/s11771-009-0155-7Search in Google Scholar

[10] Kirthikar, K. R., & Basu, B. D. (2001). Indian medicinal plants (Vol. 5). Uttaranchal, India: Oriental Enterprises. Search in Google Scholar

[11] Kruijtzer, C. M. F., Beijnen, J. H., Rosing, H., ten Bokkel Huinink, W. W., Schot, M., Jewell, R. C., Paul, E. M., & Schellens, J. H. M. (2002). Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. Journal of Clinical Oncology, 20, 2943–2950. DOI: 10.1200/jco.2002.12.116. http://dx.doi.org/10.1200/JCO.2002.12.11610.1200/JCO.2002.12.116Search in Google Scholar PubMed

[12] Leitão, N. C. M. C. S., Prado, G. H. C., Veggi, P. C., Meireles, M. A. A., & Pereira, C. G. (2013). Anacardium occidentale L. leaves extraction via SFE: Global yields, extraction kinetics, mathematical modeling and economic evaluation. The Journal of Supercritical Fluids, 78, 114–123. DOI: 10.1016/j.supflu.2013.03.024. http://dx.doi.org/10.1016/j.supflu.2013.03.02410.1016/j.supflu.2013.03.024Search in Google Scholar

[13] Lewin, G., Shridhar, N. B., Aubert, G., Thoret, S., Dubois, J., & Cresteil, T. (2011). Synthesis of antiproliferative flavones from calycopterin, major flavonoid of Calycopteris floribunda Lamk. Bioorganic & Medicinal Chemistry, 19(1), 186–196. DOI: 10.1016/j.bmc.2010.11.035. http://dx.doi.org/10.1016/j.bmc.2010.11.03510.1016/j.bmc.2010.11.035Search in Google Scholar

[14] Martínez, J., Monteiro, A. R., Rosa, P. T. V., Marques, M. O. M., & Meireles, M. A. A. (2003). Multicomponent model to describe extraction of ginger oleoresin with supercritical carbon dioxide. Industrial & Engineering Chemistry Research, 42, 1057–1063. DOI: 10.1021/ie020694f. http://dx.doi.org/10.1021/ie020694f10.1021/ie020694fSearch in Google Scholar

[15] Mayer, R. (1999). Calycopterones and calyflorenones, novel biflavonoids from Calycopteris floribunda. Journal of Natural Products, 62, 1274–1278. DOI: 10.1021/np990182e. http://dx.doi.org/10.1021/np990182e10.1021/np990182eSearch in Google Scholar

[16] Mayer, R. (2004). Five biflavonoids from Calycopteris floribunda (Combretaceae). Phytochemistry, 65, 593–601. DOI: 10.1016/j.phytochem.2004.01.001. http://dx.doi.org/10.1016/j.phytochem.2004.01.00110.1016/j.phytochem.2004.01.001Search in Google Scholar

[17] Pereira, C. G., Marques, M. O. M., Barreto, A. S., Siani, A. C., Fernandes, E. C., & Meireles, M. A. A. (2004). Extraction of indole alkaloids from Tabernaemontana catharinensis using supercritical CO2+ethanol: an evaluation of the process variables and the raw material origin. The Journal of Supercritical Fluids, 30, 51–61. DOI: 10.1016/s0896-8446(03)00112-8. http://dx.doi.org/10.1016/S0896-8446(03)00112-810.1016/S0896-8446(03)00112-8Search in Google Scholar

[18] Pereira, C. G., & Meireles, M. A. A. (2010). Supercritical fluid extraction of bioactive compounds: Fundamentals, applications and economic perspectives. Food and Bioprocess Technology, 3, 340–372. DOI: 10.1007/s11947-009-0263-2. http://dx.doi.org/10.1007/s11947-009-0263-210.1007/s11947-009-0263-2Search in Google Scholar

[19] Pick, A., Müller, H., Mayer, R., Haenisch, B., Pajeva, I. K., Weigt, M., Bönisch, H., Müller, C. E., & Wiese, M. (2011). Structure-activity relationships of flavonoids as inhibitors of breast cancer resistance protein (BCRP). Bioorganic & Medicinal Chemistry, 19, 2090–2102. DOI: 10.1016/j.bmc.2010.12.043. http://dx.doi.org/10.1016/j.bmc.2010.12.04310.1016/j.bmc.2010.12.043Search in Google Scholar

[20] Rodriguez, E., Vander Velde, G., Mabry, T. J., Subramanian, S. S., & Nair, A. G. R. (1972). Structure of calycopterin. Phytochemistry, 11, 2311–2312. DOI: 10.1016/s0031-9422(00)88396-x. http://dx.doi.org/10.1016/S0031-9422(00)88396-X10.1016/S0031-9422(00)88396-XSearch in Google Scholar

[21] Sovová, H. (1994). Rate of the vegetable oil extraction with supercritical CO2—I. Modelling of extraction curves. Chemical Engineering Science, 49, 409–414. DOI: 10.1016/0009-2509(94)87012-8. http://dx.doi.org/10.1016/0009-2509(94)87012-810.1016/0009-2509(94)87012-8Search in Google Scholar

[22] Versiani, M. A., Diyabalanage, T., Ratnayake, R., Henrich, C. J., Bates, S. E., McMahon, J. B., & Gustafson, K. R. (2011). Flavonoids from eight tropical plant species that inhibit the multidrug resistance transporter ABCG2. Journal of Natural Products, 74, 262–266. DOI: 10.1021/np100797y. http://dx.doi.org/10.1021/np100797y10.1021/np100797ySearch in Google Scholar PubMed PubMed Central

[23] Wall, M. E., Wani, M. C., Fullas, F., Oswald, J. B., Brown, D. M., Santisuk, T., Reutrakul, V., McPhail, A. T., Farnsworth, N. R., Pezzuto, J. M., Kinghorn, A. D., & Besterman, J. M. (1994). Plant antitumor agents. 31.1. The calycopterones, a new class of biflavonoids with novel cytotoxicity in a diverse panel of human tumor cell lines. Journal of Medicinal Chemistry, 37, 1465–1470. DOI: 10.1021/jm00036a012. http://dx.doi.org/10.1021/jm00036a01210.1021/jm00036a012Search in Google Scholar PubMed

[24] Wang, X. J., Liu, J. J., Yuan, Y., & Li, X. (2009). Extracting technology of volatile oil from leaf of Calycopteris floribunda by steam distillation. Applied Chemical Industry, 38, 64–65. Search in Google Scholar

[25] Wang, X., Liu, J., Li, X., & Ren, N. (2008). NaNO2-Al(NO3)3 spectrophotometric determination of total flavonoids in Calycopteris floribunda leaves. Guangdong Chemical Industry, 2008(11), 127–130. Search in Google Scholar

[26] Yang, C., Xu, Y. R., & Yao, W. X. (2002). Extraction of pharmaceutical components from Ginkgo biloba leaves using supercritical carbon dioxide. Journal of Agricultural and Food Chemistry, 50, 846–849. DOI: 10.1021/jf010945f. http://dx.doi.org/10.1021/jf010945f10.1021/jf010945fSearch in Google Scholar PubMed

[27] Yusuf, M., Chowdhury, J. U., Wahab, M. A., & Begum, J. (1994). Medicinal plants of Bangladesh. Dhaka, Bangladesh: Bangladesh Council of Scientific and Industrial Research. Search in Google Scholar

[28] Zheng, W., & Wang, S. Y. (2001). Antioxidant activity and phenolic compounds in selected herbs. Journal of Agricultural and Food Chemistry, 49, 5165–5170. DOI: 10.1021/jf010697n. http://dx.doi.org/10.1021/jf010697n10.1021/jf010697nSearch in Google Scholar PubMed

Published Online: 2013-11-15
Published in Print: 2014-3-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 28.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-013-0451-4/html
Scroll to top button