Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 28, 2013

Selective oxidation of metallic single-walled carbon nanotubes

  • Paweł Łukaszczuk EMAIL logo , Ewa Mijowska and Ryszard Kaleńczuk
From the journal Chemical Papers

Abstract

In this work we present a simple and non-invasive approach to the preparation of semi-conducting single-walled carbon nanotubes (SWCNTs) through selective destruction of the metallic counterparts present in the starting material. Most separation techniques require chemical treatment, the application of ultrasound, or the addition of auxiliary molecules, which lead to the introduction of defects and impurities. In this contribution, laser ablation SWCNTs were selectively oxidised via long-term heating leading to the enrichment of semi-conductive nanotubes. Spectroscopic analysis demonstrates that the selective character of oxidation occurs only in the optimal temperature range, determined by thermo-gravimetric analysis. By tuning the process parameters, one can obtain a sample exhibiting different purity (up to 95 % of semi-conducting nanotubes) and separation efficiency. The samples’ quality and yield of separation were determined by UV-VIS-NIR spectroscopy, Raman spectroscopy, and TG analysis. The approach presented is readily scaleable.

[1] Collins, P. G., Arnold, M. S., & Avouris, P. (2001). Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science, 292, 706–709. DOI: 10.1126/science.1058782. http://dx.doi.org/10.1126/science.105878210.1126/science.1058782Search in Google Scholar

[2] Doyle, C. D., Rocha, J. D. R., Weisman, R. B., & Tour, J. M. (2008). Structure-dependent reactivity of semiconducting single-walled carbon nanotubes with benzenediazonium salts. Journal of the American Chemical Society, 130, 6795–6800. DOI: 10.1021/ja800198t. http://dx.doi.org/10.1021/ja800198t10.1021/ja800198tSearch in Google Scholar

[3] Dresselhaus, M. S., Dresselhaus, G., & Eklund, P. C. (1996). Science of fullerenes and carbon nanotubes. San Diego, CA, USA: Academic Press. Search in Google Scholar

[4] Dresselhaus, M. S. Dresselhaus, G., Saito, R., & Jorio, A. (2005). Raman spectroscopy of carbon nanotubes. Physics Reports, 409, 47–99. DOI:10.1016/j.physrep.2004.10.006. http://dx.doi.org/10.1016/j.physrep.2004.10.00610.1016/j.physrep.2004.10.006Search in Google Scholar

[5] Feng, Y., Miyata, Y., Matsuishi, K., & Kataura, H. (2011). High-efficiency separation of single-wall carbon nanotubes by self-generated density gradient ultracentrifugation. The Journal of Physical Chemistry C, 115, 1752–1756. DOI: 10.1021/jp1100329. http://dx.doi.org/10.1021/jp110032910.1021/jp1100329Search in Google Scholar

[6] Huang, H. J., Maruyama, R., Noda, K., Kajiura, H., & Kadono, K. (2006). Preferential destruction of metallic single-walled carbon nanotubes by laser irradiation. The Journal of Physical Chemistry B, 110, 7316–7320. DOI: 10.1021/jp056684k. http://dx.doi.org/10.1021/jp056684k10.1021/jp056684kSearch in Google Scholar

[7] Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56–58. DOI: 10.1038/354056a0. http://dx.doi.org/10.1038/354056a010.1038/354056a0Search in Google Scholar

[8] Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y., & Achiba, Y. (1999). Optical properties of single-wall carbon nanotubes. Synthetic Metals, 103, 2555–2558. DOI: 10.1016/s0379-6779(98)00278-1. http://dx.doi.org/10.1016/S0379-6779(98)00278-110.1016/S0379-6779(98)00278-1Search in Google Scholar

[9] Miyata, Y., Yanagi, K., Maniwa, Y., & Kataura, H. (2008). Optical evaluation of the metal-to-semiconductor ratio of singlewall carbon nanotubes. The Journal of Physical Chemistry C, 112, 13187–13191. DOI: 10.1021/jp804006f. http://dx.doi.org/10.1021/jp804006f10.1021/jp804006fSearch in Google Scholar

[10] Qiu, H. X., Maeda, Y., & Akasaka, T. (2009). Facile and scalable route for highly efficient enrichment of semiconducting singlewalled carbon nanotubes. Journal of the American Chemical Society, 131, 16529–16533. DOI: 10.1021/ja906932p. http://dx.doi.org/10.1021/ja906932p10.1021/ja906932pSearch in Google Scholar PubMed

[11] Radushkevich, L. V., & Lukyanovich, M. V. (1952). About the structure of carbon formed by thermal decomposition of carbon monoxide on iron substrate. Soviet Journal of Physical Chemistry, 26, 88–95. (in Russian) Search in Google Scholar

[12] Song, J. W., Seo, H. W., Park, J. K., Kim, J. E., Choi, D. G., & Han, C. S. (2008). Selective removal of metallic SWNTs using microwave radiation. Current Applied Physics, 8, 725–728. DOI: 10.1016/j.cap.2007.04.055. http://dx.doi.org/10.1016/j.cap.2007.04.05510.1016/j.cap.2007.04.055Search in Google Scholar

Published Online: 2013-5-28
Published in Print: 2013-9-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 9.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-013-0345-5/html
Scroll to top button