Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 28, 2013

Modelling of kinetics of microbial degradation of simulated leachate from tobacco dust waste

  • Ivana Ćosić EMAIL logo , Marija Vuković , Zoran Gomzi and Felicita Briški
From the journal Chemical Papers

Abstract

This paper presents a kinetic analysis of the biodegradation of organic pollutants in a batch bioreactor and investigates the kinetic properties of activated sludge using different mathematical models. The treatment was conducted for different initial concentrations of leachate from 500 mg dm−3 to 5000 mg dm−3 and initial concentrations of activated sludge from 1.84 g dm−3 to 6.62 g dm−3 over 48 h. Four different kinetic models were applied to the data. The kinetic analysis was performed with the traditional Monod model, the modified Monod model with endogenous metabolism, the Haldane model, and the Haldane model extended to include endogenous metabolic consumption and known as the Endo-Haldane model. Kinetic parameters for each model were determined using differential analysis and the Nelder-Mead method of non-linear regression. The lowest deviations and very good matches with the experimental data were achieved using the Endo-Haldane model. This indicated that this model best described the process of biodegradation of leachate from tobacco waste composting. This is due to this model incorporating the effects both of inhibition and endogenous metabolism.

[1] Al-Malack, M. H. (2006). Determination of biokinetic coefficients of an immersed membrane bioreactor. Journal of Membrane Science, 271, 47–58. DOI: 10.1016/j.memsci.2005.07.008. http://dx.doi.org/10.1016/j.memsci.2005.07.00810.1016/j.memsci.2005.07.008Search in Google Scholar

[2] APHA-AWWA-WEF (1999). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC, USA: American Public Health Association. Search in Google Scholar

[3] Bae, B. U., Jung, E. S., Kim, Y. R., & Shin, H. S. (1999). Treatment of landfill leachate using activated sludge process and electron-beam radiation. Water Resources, 33, 2669–2673. DOI: 10.1016/s0043-1354(98)00488-6. 10.1016/S0043-1354(98)00488-6Search in Google Scholar

[4] Beltran, J., Gonzalez, T., & Garcia, J. (2008). Kinetics of the biodegradation of green table olive wastewaters by aerobic and anaerobic treatments. Journal of Hazardous Materials, 154, 839–845. DOI: 10.1016/j.jhazmat.2007.10.102. http://dx.doi.org/10.1016/j.jhazmat.2007.10.10210.1016/j.jhazmat.2007.10.102Search in Google Scholar

[5] Beltran de Heredia, J., Torregrosa, J., Dominguez, J. R., & Partido, E. (2005). Degradation of wine distillery wastewaters by the combination of aerobic biological treatment with chemical oxidation by Fenton’s reagent. Water Science & Technology, 51(1), 167–174. 10.2166/wst.2005.0021Search in Google Scholar

[6] Bitton, G. (2005). Wastewater microbiology (3rd ed., pp. 211–259). Hoboken, NJ, USA: Wiley. http://dx.doi.org/10.1002/047171796710.1002/0471717967Search in Google Scholar

[7] Briški, F., Kopčić, N., Ćosić, I., Kučić, D., & Vuković, M. (2012). Biodegradation of tobacco waste by composting: Genetic identification of nicotine-degrading bacteria and kinetic analysis of transformations in leachate. Chemical Papers, 66, 166, 1103–1110. DOI: 10.2478/s11696-012-0234-3. http://dx.doi.org/10.2478/s11696-012-0234-310.2478/s11696-012-0234-3Search in Google Scholar

[8] Bronstein, I. N., Semendjajev, K. A., Musiol, G., & Mühlig, H. (2004). Mathematical handbook (pp. 764, 794–797). Zagreb, Croatia: Golden Marketing-Tehnička Knjiga. (in Croatian) Search in Google Scholar

[9] Casey, T. J. (1997). Unit treatment processes in water and waste engineering. New York, NY, USA: Wiley. Search in Google Scholar

[10] Celis, E., Elefsiniotis, P., & Singhal, N. (2008). Biodegradation of agricultural herbicides in sequencing batch reactors under aerobic and anaerobic conditions. Water Research, 42, 3218–3224. DOI: 10.1016/j.watres.2008.04.008. http://dx.doi.org/10.1016/j.watres.2008.04.00810.1016/j.watres.2008.04.008Search in Google Scholar

[11] Derco, J., Černochová, L., Krcho, L., & Lalai, A. (2011). Dynamic simulations of waste water treatment plant operation. Chemical Papers, 65, 813–821, DOI: 10.2478/s11696-011-0076-4. http://dx.doi.org/10.2478/s11696-011-0076-410.2478/s11696-011-0076-4Search in Google Scholar

[12] Dollerer, J., & Wilderer, P. A. (1996). Biological treatment of leachates from hazardous waste landfills using SBBR technology. Water Science and Technology, 34, 437–444. DOI: 10.1016/s0273-1223(96)00776-7. http://dx.doi.org/10.1016/S0273-1223(96)00776-710.1016/S0273-1223(96)00776-7Search in Google Scholar

[13] European Committee for Standardization (2002). European standard: Characterization of waste — Leaching — Compliance test for leaching of granular waste materials and sludges — Part 4: One-stage batch test at a liquid to solids ratio of 10 l/kg for materials with particle size below 10 mm (without or with size reduction). EN 12457-4. Brussels, Belgium. Search in Google Scholar

[14] Gnanapragasam, G., Senthilkumar, M., Arutchelvan, V., Velayutham, T., & Nagarajan, S. (2011). Bio-kinetic analysis on treatment of textile dye wastewater using anaerobic batch reactor. Bioresource Technology, 102, 627–632. DOI: 10.1016/j.biortech.2010.08.012. http://dx.doi.org/10.1016/j.biortech.2010.08.01210.1016/j.biortech.2010.08.012Search in Google Scholar PubMed

[15] Holenda, B., Domokos, E., Rédey, A., & Fazakas, J. (2008). Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control. Computers & Chemical Engineering, 32, 1270–1278. DOI: 10.1016/j.compchemeng.2007.06.008. http://dx.doi.org/10.1016/j.compchemeng.2007.06.00810.1016/j.compchemeng.2007.06.008Search in Google Scholar

[16] Huang, X., Gui, P., & Qian, Y. (2001). Effect of sludge retention time on microbial behaviour in a submerged membrane bioreactor. Process Biochemistry, 36, 1001–1006. DOI: 10.1016/s0032-9592(01)00135-2. http://dx.doi.org/10.1016/S0032-9592(01)00135-210.1016/S0032-9592(01)00135-2Search in Google Scholar

[17] Mardani, Sh., Mirbagheri, A., Amin., M. M., & Ghasemian, M. (2011). Determination of biokinetic coefficients for activated sludge processes on municipal wastewater. Iranian Journal of Environmental Health Science & Engineering, 8(1), 25–34. Search in Google Scholar

[18] Mendenhall, W. (1964). Introduction to statistics (pp. 37–38, 160–165). Belmont, CA, USA: Wadsworth Publishing Company. Search in Google Scholar

[19] Nuhoglu, A., & Yalcin, B. (2005). Modelling of phenol removal in a batch reactor. Process Biochemistry, 40, 1233–1239. DOI: 10.1016/j.procbio.2004.04.003. http://dx.doi.org/10.1016/j.procbio.2004.04.00310.1016/j.procbio.2004.04.003Search in Google Scholar

[20] Okpokwasili, G. C., & Nweke, C. O. (2005). Microbial growth and substrate utilization kinetics. African Journal of Biotechnology, 5, 305–317. Search in Google Scholar

[21] Piotrowska-Cyplik, A., Olejnik, A., Cyplik, P., Dach, J., & Czarnecki, Z. (2009). The kinetics of nicotine degradation, enzyme activities and genotoxic potential in the characterization of tobacco waste composting. Bioresource Technology, 100, 5037–5044. DOI: 10.1016/j.biortech.2009.05.053. http://dx.doi.org/10.1016/j.biortech.2009.05.05310.1016/j.biortech.2009.05.053Search in Google Scholar

[22] Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 150, 468–493. DOI: 10.1016/j.jhazmat.2007.09.077. http://dx.doi.org/10.1016/j.jhazmat.2007.09.07710.1016/j.jhazmat.2007.09.077Search in Google Scholar

[23] Slezak, R., Krzystek, L., & Ledakowicz, S. (2012). Mathematical model of aerobic stabilization of old landfills. Chemical Papers, 66, 543–549. DOI: 10.2478/s11696-012-0133-7. http://dx.doi.org/10.2478/s11696-012-0133-710.2478/s11696-012-0133-7Search in Google Scholar

[24] Sponza, D. T. (2001). Toxicity studies in a tobacco industry biological treatment plant. Water, Air, & Soil Pollution, 134, 137–164. DOI: 10.1023/a:1014111616875. http://dx.doi.org/10.1023/A:101411161687510.1023/A:1014111616875Search in Google Scholar

[25] Tsuneda, S., Auresenia, J., Inoue, Y., Hashimoto, Y., & Hirata, A. (2002a). Kinetic model for dynamic response of threephase fluidized bed biofilm reactor for wastewater treatment. Biochemical Engineering Journal, 10, 31–37. DOI: 10.1016/s1369-703x(01)00152-8. http://dx.doi.org/10.1016/S1369-703X(01)00152-810.1016/S1369-703X(01)00152-8Search in Google Scholar

[26] Tsuneda, S., Auresenia, J., Morise, T., & Hirata, A. (2002b). Dynamic modeling and simulation of a three-phase fluidized bed batch process for wastewater treatment. Process Biochemistry, 38, 599–604. DOI: 10.1016/s0032-9592(02)00184-x. http://dx.doi.org/10.1016/S0032-9592(02)00184-X10.1016/S0032-9592(02)00184-XSearch in Google Scholar

[27] Tyrrel, S. F., Seymour, I., & Harris, J. A. (2008). Bioremediation of leachate from a green waste composting facility using waste-derived filter media. Bioresource Technology, 99, 7657–7664. DOI: 10.1016/j.biortech.2008.01.079. http://dx.doi.org/10.1016/j.biortech.2008.01.07910.1016/j.biortech.2008.01.079Search in Google Scholar PubMed

[28] Veli, S., Öztürk, T., & Dimoglo, A. (2008).Treatment of municipal solid wastes leachate by means of chemical- and electrocoagulation. Separation and Purification Technology, 6, 82–88 DOI: 10.1016/j.seppur.2007.09.026. http://dx.doi.org/10.1016/j.seppur.2007.09.02610.1016/j.seppur.2007.09.026Search in Google Scholar

[29] Vuković, M., Briški, F., Matošić, M., & Mijatović, I. (2006). Analysis of the activated sludge process in an MBR under starvation conditions. Chemical Engineering & Technology, 29, 357–36 DOI: 10.1002/ceat.200500314. http://dx.doi.org/10.1002/ceat.20050031410.1002/ceat.200500314Search in Google Scholar

[30] Wang, S. N., Xu, P., Tang, H. Z., Meng, J., Liu, X. L., Huang, J., Chen, H., Du, Y., & Blankespoor, H. D. (2004). Biodegradation and detoxification of nicotine in tobacco solid waste by a Pseudomonas sp. Biotechnology Letters, 26, 1493–1496. DOI: 10.1023/b:bile.0000044450.16235.65. http://dx.doi.org/10.1023/B:BILE.0000044450.16235.6510.1023/B:BILE.0000044450.16235.65Search in Google Scholar

[31] Wang, M. Z., Yang, G. Q., Min, H., Lv, Z. M., & Jia, X. Y. (2009). Bioaugmentation with the nicotine-degrading bacterium Pseudomonas sp. HF-1 in a sequencing batch reactor treating tobacco wastewater: Degradation study and analysis of its mechanisms. Water Research, 43, 4187–4196. DOI: 10.1016/j.watres.2009.07.012. http://dx.doi.org/10.1016/j.watres.2009.07.01210.1016/j.watres.2009.07.012Search in Google Scholar PubMed

[32] Zhong, W. H., Zhu, C. J., Shu, M., Sun, K. D., Zhao, L., Wang, C., Ye, Z. J., & Chen, J. M. (2010). Degradation of nicotine in tobacco waste extract by newly isolated Pseudomonas sp. ZUTSKD. Bioresource Technology, 101, 6935–6941. DOI: 10.1016/j.biortech.2010.03.142. http://dx.doi.org/10.1016/j.biortech.2010.03.14210.1016/j.biortech.2010.03.142Search in Google Scholar PubMed

[33] Zwietering, M. H., Jongenburger, I., Rombouts, M., & van’t Riet, K. (1990). Modeling of the bacterial growth curve. Applied and Environmental Microbiology, 56, 1875–1881. 10.1128/aem.56.6.1875-1881.1990Search in Google Scholar PubMed PubMed Central

Published Online: 2013-5-28
Published in Print: 2013-9-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-012-0287-3/html
Scroll to top button