Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 5, 2012

Functional polymer thin films designed for antifouling materials and biosensors

  • Chao Zhao EMAIL logo , Ling-Yan Li , Ming-Ming Guo and Jie Zheng
From the journal Chemical Papers

Abstract

Polymer thin films offer a versatile and ubiquitous platform for a wide variety of real-world applications in biomedicine, nanotechnology, catalysis, photovoltaic devices, and energy conversion and storage. Depending on the chemical composition of the polymers and the associated microenvironment, the physicochemical properties (biocompatibility, stability, wettability, adhesion, morphology, surface free energy, and others) of polymer films can be tuned for a specific application through precisely controlled surface synthesis and the incorporation of desirable and responsive functional groups. In this short review, we first summarise the methods most commonly used for the fabrication of polymer thin films. Then we discuss how these polymer thin films can be used in a selection of biomedical applications in antifouling materials and biosensors. Some directions for the rational design of polymer thin films to achieve a specific function or application are also provided.

[1] Azzaroni, O., Brown, A. A., & Huck, W. T. S. (2006). UCST wetting transitions of polyzwitterionic brushes driven by selfassociation. Angewandte Chemie International Edition, 45, 1770–1774. DOI: 10.1002/anie.200503264. http://dx.doi.org/10.1002/anie.20050326410.1002/anie.200503264Search in Google Scholar PubMed

[2] Bai, S., Li, S., Yao, T., Hu, Y., Bao, F., Zhang, J., Zhang, Y., Zhu, S., & He, Y. (2011). Rapid detection of eight vegetable oils on optical thin-film biosensor chips. Food Control, 22, 1624–1628. DOI: 10.1016/j.foodcont.2011.03.019. http://dx.doi.org/10.1016/j.foodcont.2011.03.01910.1016/j.foodcont.2011.03.019Search in Google Scholar

[3] Barbey, R., Lavanant, L., Paripovic, D., Schüwer, N., Sugnaux, C., Tugulu, S., & Klok, H. A. (2009). Polymer brushes via surface-initiated controlled radical polymerization: Synthesis, characterization, properties, and applications. Chemical Reviews, 109, 5437–5527. DOI: 10.1021/cr900045a. http://dx.doi.org/10.1021/cr900045a10.1021/cr900045aSearch in Google Scholar PubMed

[4] Basinska, T. (2002). Poly(styrene/acrolein) and poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microspheres. Similarities and differences. e-Polymers, 11, 1–11. 10.1515/epoly.2002.2.1.145Search in Google Scholar

[5] Basinska, T., Slomkowski, S., Kazmierski, S., Dworak, A., & Chehimi, M. M. (2004). Studies of the surface layer structure and properties of poly(styrene/α-t-butoxy-ω-polyglycidol) microspheres by carbon nuclear magnetic resonance, Xray photoelectron spectroscopy, and the adsorption of human serum albumin and γ-globulins. Journal of Polymer Science Part A: Polymer Chemistry, 42, 615–623. DOI: 10.1002/pola.10863. http://dx.doi.org/10.1002/pola.1086310.1002/pola.10863Search in Google Scholar

[6] Bernand-Mantel, D., Chehimi, M. M., Millot, M. C., & Carbonnier, B. (2010). Protein-functionalized ultrathin glycidyl methacrylate polymer grafts on gold for the development of optical biosensors: an SPR investigation. Surface and Interface Analysis, 42, 1035–1040. DOI: 10.1002/sia.3469. http://dx.doi.org/10.1002/sia.346910.1002/sia.3469Search in Google Scholar

[7] Bernards, M. T., Cheng, G., Zhang, Z., Chen, S., & Jiang, S. (2008). Nonfouling polymer brushes via surface-initiated, two-component atom transfer radical polymerization. Macromolecules, 41, 4216–4219. DOI: 10.1021/ma800185y. http://dx.doi.org/10.1021/ma800185y10.1021/ma800185ySearch in Google Scholar

[8] Blas, H., Save, M., Boissière, C., Sanchez, C., & Charleux, B. (2011). Surface-initiated nitroxide-mediated polymerization from ordered mesoporous silica. Macromolecules, 44, 2577–2588. DOI: 10.1021/ma200354r. http://dx.doi.org/10.1021/ma200354r10.1021/ma200354rSearch in Google Scholar

[9] Boozer, C., Ladd, J., Chen, S., Yu, Q., Homola, J., & Jiang, S. (2004). DNA directed protein immobilization on mixed ssDNA/oligo(ethylene glycol) self-assembled monolayers for sensitive biosensors. Analytical Chemistry, 76, 6967–6972. DOI: 10.1021/ac048908l. http://dx.doi.org/10.1021/ac048908l10.1021/ac048908lSearch in Google Scholar PubMed

[10] Brocchini, S., James, K., Tangpasuthadol, V., & Kohn, J. (1997). A combinatorial approach for polymer design. Journal of the American Chemical Society, 119, 4553–4554. DOI: 10.1021/ja970389z. http://dx.doi.org/10.1021/ja970389z10.1021/ja970389zSearch in Google Scholar

[11] Brocchini, S., James, K., Tangpasuthadol, V., & Kohn, J. (1998). Structure-property correlations in a combinatorial library of degradable biomaterials. Journal of Biomedical Materials Research, 42, 66–75. DOI: 10.1002/(sici)1097-4636(199810)42:1〈66::aid-jbm9〉3.0.co;2-m. http://dx.doi.org/10.1002/(SICI)1097-4636(199810)42:1<66::AID-JBM9>3.0.CO;2-M10.1002/(SICI)1097-4636(199810)42:1<66::AID-JBM9>3.0.CO;2-MSearch in Google Scholar

[12] Chang, Y., Chang, W. J., Shih, Y. J., Wei, T. C., & Hsiue, G. H. (2011). Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization. ACS Applied Materials & Interfaces, 3, 1228–1237. DOI: 10.1021/am200055k. http://dx.doi.org/10.1021/am200055k10.1021/am200055kSearch in Google Scholar

[13] Chang, Y., Chen, S., Yu, Q., Zhang, Z., Bernards, M., & Jiang, S. (2007). Development of biocompatible interpenetrating polymer networks containing a sulfobetaine-based polymer and a segmented polyurethane for protein resistance. Biomacromolecules, 8, 122–127. DOI: 10.1021/bm060739m. http://dx.doi.org/10.1021/bm060739m10.1021/bm060739mSearch in Google Scholar

[14] Chang, Y., Shu, S. H., Shih, Y. J., Chu, C. W., Ruaan, R. C., & Chen, W. Y. (2010a). Hemocompatible mixed-charge copolymer brushes of pseudozwitterionic surfaces resistant to nonspecific plasma protein fouling. Langmuir, 26, 3522–3530. DOI: 10.1021/la903172j. http://dx.doi.org/10.1021/la903172j10.1021/la903172jSearch in Google Scholar

[15] Chang, Y., Yandi, W., Chen, W. Y., Shih, Y. J., Yang, C. C., Chang, Y., Ling, Q. D., & Higuchi, A. (2010b). Tunable bioadhesive copolymer hydrogels of thermoresponsive poly(N-isopropyl acrylamide) containing zwitterionic polysulfobetaine. Biomacromolecules, 11, 1101–1110. DOI: 10.1021/bm100093g. http://dx.doi.org/10.1021/bm100093g10.1021/bm100093gSearch in Google Scholar

[16] Chelmowski, R., Koester, S. D., Kerstan, A., Prekelt, A., Grunwald, C., Winkler, T., Metzler-Nolte, N., Terfort, A., & Wöll, C. (2008). Peptide-based SAMs that resist the adsorption of proteins. Journal of the American Chemical Society, 130, 14952–14953. DOI: 10.1021/ja8065754. http://dx.doi.org/10.1021/ja806575410.1021/ja8065754Search in Google Scholar

[17] Chen, S., Cao, Z., & Jiang, S. (2009). Ultra-low fouling peptide surfaces derived from natural amino acids. Biomaterials, 30, 5892–5896. DOI: 10.1016/j.biomaterials.2009.07.001. http://dx.doi.org/10.1016/j.biomaterials.2009.07.00110.1016/j.biomaterials.2009.07.001Search in Google Scholar

[18] Chen, S., & Jiang, S. (2008). An new avenue to nonfouling materials. Advanced Materials, 20, 335–338. DOI: 10.1002/adma.200701164. http://dx.doi.org/10.1002/adma.20070116410.1002/adma.200701164Search in Google Scholar

[19] Chen, S., Li, L., Zhao, C., & Zheng, J. (2010). Surface hydration, principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 51, 5283–5293. DOI: 10.1016/j.polymer. 2010.08.022. Search in Google Scholar

[20] Chen, S., Liu, L., Zhou, J., & Jiang, S. (2003). Controlling antibody orientation on charged self-assembled monolayers. Langmuir, 19, 2859–2864. DOI: 10.1021/la026498v. http://dx.doi.org/10.1021/la026498v10.1021/la026498vSearch in Google Scholar

[21] Chen, S., Zheng, J., Li, L., & Jiang, S. (2005). Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials. Journal of the American Chemical Society, 127, 14473–14478. DOI: 10.1021/ja054169u. http://dx.doi.org/10.1021/ja054169u10.1021/ja054169uSearch in Google Scholar

[22] Cheng, G., Li, G., Xue, H., Chen, S., Bryers, J. D., & Jiang, S. (2009). Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials, 30, 5234–5240. DOI: 10.1016/j.biomaterials.2009.05.058. http://dx.doi.org/10.1016/j.biomaterials.2009.05.05810.1016/j.biomaterials.2009.05.058Search in Google Scholar

[23] Cheng, G., Mi, L., Cao, Z., Xue, H., Yu, Q., Carr, L., & Jiang, S. (2010). Functionalizable and ultrastable zwitterionic nanogels. Langmuir, 26, 6883–6886. DOI: 10.1021/la100664g. http://dx.doi.org/10.1021/la100664g10.1021/la100664gSearch in Google Scholar

[24] Cheng, G., Xue, H., Zhang, Z., Chen, S., & Jiang, S. (2008). A switchable biocompatible polymer surface with selfsterilizing and nonfouling capabilities. Angewandte Chemie, 120, 8963–8966. DOI: 10.1002/ange. 200803570. http://dx.doi.org/10.1002/ange.20080357010.1002/ange.200803570Search in Google Scholar

[25] Chu, L. Q., Knoll, W., & Förch, R. (2006). Pulsed plasma polymerized di(ethylene glycol) monovinyl ether coatings for nonfouling surfaces. Chemistry of Materials, 18, 4840–4844. DOI: 10.1021/cm061217g. http://dx.doi.org/10.1021/cm061217g10.1021/cm061217gSearch in Google Scholar

[26] Clark, L. C., & Lyons, C. (1962). Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences, 102, 29–45. DOI: 10.1111/j.1749-6632.1962.tb13623.x. http://dx.doi.org/10.1111/j.1749-6632.1962.tb13623.x10.1111/j.1749-6632.1962.tb13623.xSearch in Google Scholar

[27] Cruz-Monteagudo, M., Borges, F., Cordeiro, M.N. D. S., Cagide Fajin, J. L., Morell, C., Ruiz, R. M., Cañizares-Carmenate, Y., & Dominguez, E. R. (2008). Desirability-based methods of multiobjective optimization and ranking for global QSAR studies. Filtering safe and potent drug candidates from combinatorial libraries. Journal of Combinatorial Chememistry, 10, 897–913. DOI: 10.1021/cc800115y. 10.1021/cc800115ySearch in Google Scholar

[28] Dalsin, J. L., Hu, B. H., Lee, B. P., & Messersmith, P. B. (2003). Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. Journal of the American Chemical Society, 125, 4253–4258. DOI: 10.1021/ja0284963. http://dx.doi.org/10.1021/ja028496310.1021/ja0284963Search in Google Scholar

[29] Dávalos-Pantoja, L., Ortega-Vinuesa, J. L., Bastos-González, D., & Hidalgo-álvarez, R. (2001). Colloidal stability of IgG- and IgY-coated latex microspheres. Colloids and Surfaces B: Biointerfaces, 20, 165–175. DOI: 10.1016/s0927-7765(00)00189-2. http://dx.doi.org/10.1016/S0927-7765(00)00189-210.1016/S0927-7765(00)00189-2Search in Google Scholar

[30] Decher, G. (1997). Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science, 277, 1232–1237. DOI: 10.1126/science.277.5330.1232. http://dx.doi.org/10.1126/science.277.5330.123210.1126/science.277.5330.1232Search in Google Scholar

[31] Decher, G., & Schmitt, J. (1992). Fine-tuning of the film thickness of ultrathin multilayer films composed of consecutively alternating layers of anionic and cationic polyelectrolytes. In C. Helm, M. Lösche, & H. Möhwald (Eds.), Trends in Colloid and Interface Science VI. (pp. 160–164). Berlin/Heidelberg, Germany: Springer. DOI: 10.1007/bfb0116302. http://dx.doi.org/10.1007/BFb011630210.1007/BFb0116302Search in Google Scholar

[32] De Vos, K., Girones, J., Popelka, S., Schacht, E., Baets, R., & Bienstman, P. (2009). SOI optical microring resonator with poly(ethylene glycol) polymer brush for label-free biosensor applications. Biosensors and Bioelectronics, 24, 2528–2533. DOI: 10.1016/j.bios.2009.01.009. http://dx.doi.org/10.1016/j.bios.2009.01.00910.1016/j.bios.2009.01.009Search in Google Scholar

[33] Di Tuoro, D., Portaccio, M., Lepore, M., Arduini, F., Moscone, D., & Mita, D. G. (2010). An acetylcholinesterase biosensor for determination of low concentrations of Paraoxon and Dichlorvos. Journal of Biotechnology, 150, S277. DOI: 10.1016/j.jbiotec.2010.09.196. http://dx.doi.org/10.1016/j.jbiotec.2010.09.19610.1016/j.jbiotec.2010.09.196Search in Google Scholar

[34] Durand, N., Boutevin, B., Silly, G., & Améduri, B. (2011). “Grafting from” polymerization of vinylidene fluoride (VDF) from silica to achieve original silica-PVDF core-shells. Macromolecules, 44, 8487–8493. DOI: 10.1021/ma2018167. http://dx.doi.org/10.1021/ma201816710.1021/ma2018167Search in Google Scholar

[35] Fan, X., Lin, L., Dalsin, J. L., & Messersmith, P. B. (2005). Biomimetic anchor for surface-initiated polymerization from metal substrates. Journal of the American Chemical Society, 127, 15843–15847. DOI: 10.1021/ja0532638. http://dx.doi.org/10.1021/ja053263810.1021/ja0532638Search in Google Scholar

[36] Feng, J., Stoddart, S., Weerakoon, K. A., & Chen, W. (2006a). COLL 308-Synthesis of ultra-thin polybutadiene films by surface-initiated-ring-opening-metathesis polymerization. In Abstracts of Papers of the American Chemical Society (Vol. 232). Washington, DC, USA: American Chemical Society. Search in Google Scholar

[37] Feng, W., Zhu, S., Ishihara, K., & Brash, J. L. (2005). Adsorption of fibrinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surfaceinitiated atom transfer radical polymerization. Langmuir, 21, 5980–5987. DOI: 10.1021/la050277i. http://dx.doi.org/10.1021/la050277i10.1021/la050277iSearch in Google Scholar

[38] Feng, W., Zhu, S., Ishihara, K., & Brash, J. L. (2006b). Protein resistant surfaces: Comparison of acrylate graft polymers bearing oligo-ethylene oxide and phosphorylcholine side chains. Biointerphases, 1, 50–60. DOI: 10.1116/1.2187495. http://dx.doi.org/10.1116/1.218749510.1116/1.2187495Search in Google Scholar

[39] Ferreira, M., Cheung, J. H., & Rubner, M. F. (1994). Molecular self-assembly of conjugated polyions: a new process for fabricating multilayer thin film heterostructures. Thin Solid Films, 244, 806–809. DOI: 10.1016/0040-6090(94)90575-4. http://dx.doi.org/10.1016/0040-6090(94)90575-410.1016/0040-6090(94)90575-4Search in Google Scholar

[40] Frasconi, M., Tortolini, C., Botrè, F., & Mazzei, F. (2010). Multifunctional Au nanoparticle dendrimer-based surface plasmon resonance biosensor and its application for improved insulin detection. Analytical Chemistry, 82, 7335–7342. DOI: 10.1021/ac101319k. http://dx.doi.org/10.1021/ac101319k10.1021/ac101319kSearch in Google Scholar PubMed

[41] Fristrup, C. J., Jankova, K., & Hvilsted, S. (2009). Surfaceinitiated atom transfer radical polymerization—a technique to develop biofunctional coatings. Soft Matter, 5, 4623–4634. DOI: 10.1039/b821815c. http://dx.doi.org/10.1039/b821815c10.1039/b821815cSearch in Google Scholar

[42] Gam-Derouich, S., Gosecka, M., Lepinay, S., Turmine, M., Carbonnier, B., Basinska, T., Slomkowski, S., Millot, M. C., Othmane, A., Ben Hassen-Chehimi, D., & Chehimi, M. M. (2011). Highly hydrophilic surfaces from polyglycidol grafts with dual antifouling and specific protein recognition properties. Langmuir, 27, 9285–9294. DOI: 10.1021/la200290k. 10.1021/la200290kSearch in Google Scholar PubMed

[43] Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta, 185, 1–17. DOI: 10.1016/0003-2670(86)80028-9. http://dx.doi.org/10.1016/0003-2670(86)80028-910.1016/0003-2670(86)80028-9Search in Google Scholar

[44] Ghosh, J., Lewitus, D. Y., Chandra, P., Joy, A., Bushman, J., Knight, D., & Kohn, J. (2011). Computational modeling of in vitro biological responses on polymethacrylate surfaces. Polymer, 52, 2650–2660. DOI: 10.1016/j.polymer.2011.04. 014. http://dx.doi.org/10.1016/j.polymer.2011.04.01410.1016/j.polymer.2011.04.014Search in Google Scholar PubMed PubMed Central

[45] Goldfarb, D. L., Burns, S. D., Vyklicky, L., Pfeiffer, D., Lisi, A., Petrillo, K., Arnold, J., Clancy, A., Lang, R. N., Medeiros, D. R., Sanders, D. P., Allen, R. D., Owe-yang, D. C., Noda, K., Tachibana, S., & Shirai, S. (2008). Graded spin-on organic bottom antireflective coating for high NA lithography. In C. L. Henderson (Ed.), Proceedings of SPIE: Advances in Resist Materials and Processing Technology XXV (Vol. 6923). San Jose, CA, USA: SPIE Digital Library. DOI: 10.1117/12.772268. 10.1117/12.772268Search in Google Scholar

[46] Grande, C. D., Tria, M. C., Jiang, G., Ponnapati, R., & Advincula, R. (2011). Surface-grafted polymers from electropolymerized polythiophene RAFT agent. Macromolecules, 44, 966–975. DOI: 10.1021/ma102065u. http://dx.doi.org/10.1021/ma102065u10.1021/ma102065uSearch in Google Scholar

[47] Gu, H., Ho, P. L., Tsang, K. W. T., Wang, L., & Xu, B. (2003). Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other Grampositive bacteria at ultralow concentration. Journal of the American Chemical Society, 125, 15702–15703. DOI: 10.1021/ja0359310. http://dx.doi.org/10.1021/ja035931010.1021/ja0359310Search in Google Scholar PubMed

[48] Gudipati, C. S., Finlay, J. A., Callow, J. A., Callow, M. E., & Wooley, K. L. (2005). The antifouling and fouling-release perfomance of hyperbranched fluoropolymer (HBFP)-poly (ethylene glycol) (PEG) composite coatings evaluated by adsorption of biomacromolecules and the green fouling alga Ulva. Langmuir, 21, 3044–3053. DOI: 10.1021/la048015o. http://dx.doi.org/10.1021/la048015o10.1021/la048015oSearch in Google Scholar PubMed

[49] Gurbuz, N., Demirci, S., Yavuz, S., & Caykara, T. (2011). Synthesis of cationic N-[3-(dimethylamino)propyl]methacrylamide brushes on silicon wafer via surface-initiated RAFT polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 49, 423–431. DOI: 10.1002/pola.24454. http://dx.doi.org/10.1002/pola.2445410.1002/pola.24454Search in Google Scholar

[50] Haas, D. E., Quijada, J. N., Picone, S. J., & Birnie, D. P. (2000). Effect of solvent evaporation rate on Skin formation during spin coating of complex solutions. In B. S. Dunn, E. J. A. Pope, H. K. Schmidt, & M. Yamane (Eds.), Proceedings of SPIE: Surface and Interface Physics Papers (Vol. 3943, pp. 280–284). San Jose, CA, USA: SPIE Digital Library. DOI: 10.1117/12.384348. 10.1117/12.384348Search in Google Scholar

[51] Harris, J. M. (1992). Poly(ethylene glycol) chemistry: Biotechnical and biomedical applications. New York, NY, USA: Plenum Press. 10.1007/978-1-4899-0703-5Search in Google Scholar

[52] He, Y., Hower, J., Chen, S., Bernards, M. T., Chang, Y., & Jiang, S. (2008). Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water. Langmuir, 24, 10358–10364. DOI: 10.1021/la8013046. http://dx.doi.org/10.1021/la801304610.1021/la8013046Search in Google Scholar PubMed

[53] Hobbs, S. K., Shi, G., & Bednarski, M. D. (2003). Synthesis of polymerized thin films for immobilized ligand display in proteomic analysis. Bioconjugate Chemistry, 14, 526–531. DOI: 10.1021/bc025637h. http://dx.doi.org/10.1021/bc025637h10.1021/bc025637hSearch in Google Scholar PubMed

[54] Holland, N. B., Qiu, Y., Ruegsegger, M., & Marchant, R. E. (1998). Biomimetic engineering of non-adhesive glycocalyxlike surfaces using oligosaccharide surfactant polymers. Nature, 392, 799–801. DOI: 10.1038/33894. http://dx.doi.org/10.1038/3389410.1038/33894Search in Google Scholar PubMed

[55] Horák, D., Shagotova, T., Mitina, N., Trchová, M., Boiko, N., Babič, M., Stoika, R., Kovářová, J., Hevus, O., Beneš, M. J., Klyuchivska, O., Holler, P., & Zaichenko, A. (2011). Surfaceinitiated polymerization of 2-hydroxyethyl methacrylate from heterotelechelic oligoperoxide-coated Γ-Fe2O3 nanoparticles and their engulfment by mammalian cells. Chemistry of Materials, 23, 2637–2649. DOI: 10.1021/cm2004215. http://dx.doi.org/10.1021/cm200421510.1021/cm2004215Search in Google Scholar

[56] Hower, J. C., Bernards, M. T., Chen, S., Tsao, H. K., Sheng, Y. J., & Jiang, S. (2009). Hydration of “nonfouling” functional groups. The Journal of Physical Chemistry B, 113, 197–201. DOI: 10.1021/jp8065713. http://dx.doi.org/10.1021/jp806571310.1021/jp8065713Search in Google Scholar PubMed

[57] Hu, Z. K., Finlay, J. A., Callow, M. E., & De Simone, J. M. (2009). Novel perfluoropolyethers as fouling release coatings: Investigation of structure-property relationships relevant to fouling resistance and release. In Abstracts of Papers of the American Chemical Society (Vol. 237). Washington, DC, USA: American Chemical Society. Search in Google Scholar

[58] Indyk, H. E. (2011). An optical biosensor assay for the determination of folate in milk and nutritional dairy products. International Dairy Journal, 21, 783–789. DOI: 10.1016/j.idairyj.2011.03.013. http://dx.doi.org/10.1016/j.idairyj.2011.03.01310.1016/j.idairyj.2011.03.013Search in Google Scholar

[59] Ionov, L., & Diez, S. (2009). Environment-friendly photolithography using poly(N-isopropylacrylamide)-based thermoresponsive photoresists. Journal of the American Chemical Society, 131, 13315–13319. DOI: 10.1021/ja902660s. http://dx.doi.org/10.1021/ja902660s10.1021/ja902660sSearch in Google Scholar PubMed

[60] Ishihara, K. (2000). New polymeric biomaterials-phospholipid polymers with a biocompatible surface. Frontiers of Medical & Biological Engineering, 10, 83–95. DOI: 10.1163/15685570052061946. http://dx.doi.org/10.1163/1568557005206194610.1163/15685570052061946Search in Google Scholar PubMed

[61] Issa, A. A., Al-Degs, Y. S., & Al-Rabady, N. A. (2008). Deposition of two natural clays on a Pt surface using potentiostatic and spin-coating techniques: a comparative study. Clay Minerals, 43, 501–510. DOI: 10.1180/claymin. 2008.043.3.13. http://dx.doi.org/10.1180/claymin.2008.043.3.1310.1180/claymin.2008.043.3.13Search in Google Scholar

[62] Jampala, S. N., Sarmadi, M., Somers, E. B., Wong, A. C. L., & Denes, F. S. (2008). Plasma-enhanced synthesis of bactericidal quaternary ammonium thin layers on stainless steel and cellulose surfaces. Langmuir, 24, 8583–8591. DOI: 10.1021/la800405x. http://dx.doi.org/10.1021/la800405x10.1021/la800405xSearch in Google Scholar PubMed

[63] Jiang, S., & Cao, Z. (2010). Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Advanced Materials, 22, 920–932. DOI: 10.1002/adma.200901407. http://dx.doi.org/10.1002/adma.20090140710.1002/adma.200901407Search in Google Scholar PubMed

[64] Jung, H. J., Chang, J., Park, Y. J., Kang, S. J., Lotz, B., Huh, J., & Park, C. (2009). Shear-induced ordering of ferroelectric crystals in spin-coated thin poly(vinylidene fluorideco-trifluoroethylene) films. Macromolecules, 42, 4148–4154. DOI: 10.1021/ma900422n. http://dx.doi.org/10.1021/ma900422n10.1021/ma900422nSearch in Google Scholar

[65] Kessler, D., Jochum, F. D., Choi, J., Char, K., & Theato, P. (2011). Reactive surface coatings based on polysilsesquiox anes: Universal method toward light-responsive surfaces. ACS Applied Materials & Interfaces, 3, 124–128. DOI: 10.1021/am1010892. http://dx.doi.org/10.1021/am101089210.1021/am1010892Search in Google Scholar

[66] Kessler, D., Roth, P. J., & Theato, P. (2009). Reactive surface coatings based on polysilsesquioxanes: Controlled functionalization for specific protein immobilization. Langmuir, 25, 10068–10076. DOI: 10.1021/la901878h. http://dx.doi.org/10.1021/la901878h10.1021/la901878hSearch in Google Scholar

[67] Kim, Y. P., Hong, M.Y., Kim, J., Oh, E., Shon, H. K., Moon, D. W., Kim, H. S., & Lee, T. G. (2007a). Quantitative analysis of surface-immobilized protein by TOF-SIMS: Effects of protein orientation and trehalose additive. Analytical Chemistry, 79, 1377–1385. DOI: 10.1021/ac0616005. http://dx.doi.org/10.1021/ac061600510.1021/ac0616005Search in Google Scholar

[68] Kim, Y. H., Jung, M. S., Yoon, D. K., Jee, M. G., & Jung, H. T. (2007b). A solution processible semiconducting polymer interlayer for blue light-emitting diodes. Nanotechnology, 18, 175608. DOI: 10.1088/0957-4484/18/17/175608. http://dx.doi.org/10.1088/0957-4484/18/17/17560810.1088/0957-4484/18/17/175608Search in Google Scholar

[69] Kingshott, P., Thissen, H., & Griesser, H. J. (2002). Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins. Biomaterials, 23, 2043–2056. DOI: 10.1016/s0142-9612(01)00334-9. http://dx.doi.org/10.1016/S0142-9612(01)00334-910.1016/S0142-9612(01)00334-9Search in Google Scholar

[70] Konradi, R., Pidhatika, B., Mühlebach, A., & Textort, M. (2008). Poly-2-methyl-2-oxazoline: A peptide-like polymer for protein-repellent surfaces. Langmuir, 24, 613–616. DOI: 10.1021/la702917z. http://dx.doi.org/10.1021/la702917z10.1021/la702917zSearch in Google Scholar PubMed

[71] Ladd, J., Boozer, C., Yu, Q., Chen, S., Homola, J., & Jiang, S. (2004). DNA-directed protein immobilization on mixed selfassembled monolayers via a streptavidin bridge. Langmuir, 20, 8090–8095. DOI: 10.1021/la049867r. http://dx.doi.org/10.1021/la049867r10.1021/la049867rSearch in Google Scholar PubMed

[72] Ladd, J., Zhang, Z., Chen, S., Hower, J. C., & Jiang, S. (2008). Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules, 9, 1357–1361. DOI: 10.1021/bm701301s. http://dx.doi.org/10.1021/bm701301s10.1021/bm701301sSearch in Google Scholar PubMed

[73] Lee, R. S., Chen, W. H., & Lin, J. H. (2011). Polymer-grafted multi-walled carbon nanotubes through surface-initiated ring-opening polymerization and click reaction. Polymer, 52, 2180–2188. DOI: 10.1016/j.polymer.2011.03.020. http://dx.doi.org/10.1016/j.polymer.2011.03.02010.1016/j.polymer.2011.03.020Search in Google Scholar

[74] Lerum, M. F. Z., & Chen, W. (2011). Surface-initiated ringopening metathesis polymerization in the vapor phase: An efficient method for grafting cyclic olefins with low strain energies. Langmuir, 27, 5403–5409. DOI: 10.1021/la2002892. http://dx.doi.org/10.1021/la200289210.1021/la2002892Search in Google Scholar PubMed PubMed Central

[75] Li, G., Xue, H., Gao, C., Zhang, F., & Jiang, S. (2010). Nonfouling polyampholytes from an ion-pair comonomer with biomimetic adhesive groups. Macromolecules, 43, 14–16. DOI: 10.1021/ma902029s. http://dx.doi.org/10.1021/ma902029s10.1021/ma902029sSearch in Google Scholar PubMed PubMed Central

[76] Liu, G., & Lin, Y. (2006). Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Analytical Chemistry, 78, 835–843. DOI: 10.1021/ac051559q. http://dx.doi.org/10.1021/ac051559q10.1021/ac051559qSearch in Google Scholar PubMed

[77] Liu, Y. C., Wu, J. Y., Wang, S. C., Chwu, J. W., Lin, C. C., Chen, M. S., & Huang, T. (2008). Novel defect-repairing method for etched-thinning LCDs. In SID International Symposium Digest of Technical Papers, 39, 249–251. DOI: 10.1889/1.3069636. http://dx.doi.org/10.1889/1.306963610.1889/1.3069636Search in Google Scholar

[78] Lu, D. F., Qi, Z. M., & Liu, R. P. (2011). An interferometric biosensor composed of a prism-chamber assembly and a composite waveguide with a Ta2O5 nanometric layer. Sensors and Actuators B: Chemical, 157, 575–580. DOI: 10.1016/j.snb.2011.05.025. http://dx.doi.org/10.1016/j.snb.2011.05.02510.1016/j.snb.2011.05.025Search in Google Scholar

[79] Lubambo, A. F., Lucyszyn, N., Petzhold, C. L., de Camargo, P. C., Sierakowski, M. R., Schreiner, W. H., & Saul, C. K. (2011). Self-assembled polystyrene/xyloglucan nanospheres from spin coating evaporating mixtures. Carbohydrate Polymers, 84, 126–132. DOI: 10.1016/j.carbpol.2010.11.010. http://dx.doi.org/10.1016/j.carbpol.2010.11.01010.1016/j.carbpol.2010.11.010Search in Google Scholar

[80] Luk, Y. Y., Kato, M., & Mrksich, M. (2000). Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir, 16, 9604–9608. DOI: 10.1021/la0004653. http://dx.doi.org/10.1021/la000465310.1021/la0004653Search in Google Scholar

[81] Ma, H., He, J., Liu, X., Gan, J., Jin, G., & Zhou, J. (2010). Surface initiated polymerization from substrates of low initiator density and its applications in biosensors. ACS Applied Materials & Interfaces, 2, 3223–3230. DOI: 10.1021/am1006832. http://dx.doi.org/10.1021/am100683210.1021/am1006832Search in Google Scholar PubMed

[82] Ma, H., Hyun, J., Stiller, P., & Chilkoti, A. (2004). “Nonfouling” oligo(ethylene glycol)-functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization. Advanced Materials, 16, 338–341. DOI: 10.1002/adma.200305830. http://dx.doi.org/10.1002/adma.20030583010.1002/adma.200305830Search in Google Scholar

[83] Mahadeva, S. K., & Kim, J. (2011). Conductometric glucose biosensor made with cellulose and tin oxide hybrid nanocomposite. Sensors and Actuators B: Chemical, 157, 177–182. DOI: 10.1016/j.snb.2011.03.046. http://dx.doi.org/10.1016/j.snb.2011.03.04610.1016/j.snb.2011.03.046Search in Google Scholar

[84] Mahmud, G., Huda, S., Yang, W., Kandere-Grzybowska, K., Pilans, D., Jiang, S., & Grzybowski, B. A. (2011). Carboxybetaine methacrylate polymers offer robust, long-term protection against cell adhesion. Langmuir, 27, 10800–10804. DOI: 10.1021/la201066y. http://dx.doi.org/10.1021/la201066y10.1021/la201066ySearch in Google Scholar PubMed PubMed Central

[85] Maier, W. F., Stöwe, K., & Sieg, S. (2007). Combinatorial and high-throughput materials science. Angewandte Chemie International Edition, 46, 6016–6067. DOI: 10.1002/anie.200603675. http://dx.doi.org/10.1002/anie.20060367510.1002/anie.200603675Search in Google Scholar PubMed

[86] Martwiset, S., Koh, A. E., & Chen, W. (2006). Nonfouling characteristics of dextran-containing surfaces. Langmuir, 22, 8192–8196. DOI: 10.1021/la061064b. http://dx.doi.org/10.1021/la061064b10.1021/la061064bSearch in Google Scholar PubMed PubMed Central

[87] McMahon, C. P., Rocchitta, G., Serra, P. A., Kirwan, S. M., Lowry, J. P., & O’Neill, R. D. (2006). Control of the oxygen dependence of an implantable polymer/enzyme composite biosensor for glutamate. Analytical Chemistry, 78, 2352–2359. DOI: 10.1021/ac0518194. http://dx.doi.org/10.1021/ac051819410.1021/ac0518194Search in Google Scholar PubMed

[88] Meier, M. A. R., & Schubert, U. S. (2004). Combinatorial polymer research and high-throughput experimentation: powerful tools for the discovery and evaluation of new materials. Journal of Materials Chemistry, 14, 3289–3299. DOI: 10.1039/b406497f. http://dx.doi.org/10.1039/b406497f10.1039/b406497fSearch in Google Scholar

[89] Merulla, D., Buffi, N., van Lintel, H., Renaud, P., & van der Meer, J. R. (2010). Development of a bacterial biosensor for arsenite detection. Journal of Biotechnology, 150, S224–S225. DOI: 10.1016/j.jbiotec.2010.09.058. http://dx.doi.org/10.1016/j.jbiotec.2010.09.05810.1016/j.jbiotec.2010.09.058Search in Google Scholar

[90] Mhamdi, L., Picart, C., Lagneau, C., Othmane, A., Grosgogeat, B., Jaffrezic-Renault, N., & Ponsonnet, L. (2006). Study of the polyelectrolyte multilayer thin films’ properties and correlation with the behavior of the human gingival fibroblasts. Materials Science and Engeneering: C, 26, 273–281. DOI: 10.1016/j.msec.2005.10.049. http://dx.doi.org/10.1016/j.msec.2005.10.04910.1016/j.msec.2005.10.049Search in Google Scholar

[91] Min, H., Park, J. W., Shon, H. K., Moon, D. W., & Lee, T. G. (2008). ToF-SIMS study on the cleaning methods of Au surface and their effects on the reproducibility of self-assembled monolayers. Applied Surface Science, 255, 1025–1028. DOI: 10.1016/j.apsusc.2008.05.099. http://dx.doi.org/10.1016/j.apsusc.2008.05.09910.1016/j.apsusc.2008.05.099Search in Google Scholar

[92] Minko, S., Patil, S., Datsyuk, V., Simon, F., Eichhorn, K. J., Motornov, M., Usov, D., Tokarev, I., & Stamm, M. (2002). Synthesis of adaptive polymer brushes via “grafting to” approach from melt. Langmuir, 18, 289–296. DOI: 10.1021/la015637q. http://dx.doi.org/10.1021/la015637q10.1021/la015637qSearch in Google Scholar

[93] Mo, Y., & Bai, M. (2008). Preparation and adhesion of a dualcomponent self-assembled dual-layer film on silicon by a dip-coating nanoparticles method. The Journal of Physical Chemistry C, 112, 11257–11264. DOI: 10.1021/jp802608m. http://dx.doi.org/10.1021/jp802608m10.1021/jp802608mSearch in Google Scholar

[94] Mouri, M., Ikawa, T., Narita, M., Hoshino, F., & Watanabe, O. (2010). Orientation control of photo-immobilized antibodies on the surface of azobenzene-containing polymers by the introduction of functional groups. Macromolecular Bioscience, 10, 612–620. DOI: 10.1002/mabi.200900394. http://dx.doi.org/10.1002/mabi.20090039410.1002/mabi.200900394Search in Google Scholar PubMed

[95] Mrabet, B., Nguyen, M. N., Majbri, A., Mahouche, S., Turmine, M., Bakhrouf, A., & Chehimi, M. M. (2009). Anti-fouling poly(2-hydoxyethyl methacrylate) surface coatings with specific bacteria recognition capabilities. Surface Science, 603, 2422–2429. DOI: 10.1016/j.susc.2009.05.020. http://dx.doi.org/10.1016/j.susc.2009.05.02010.1016/j.susc.2009.05.020Search in Google Scholar

[96] Nakayama, H., Oshima, T., Shinmyo, A., & Ogasawara, N. (2010). Development of whole-cell biosensor using a moderate halophilic bacterium, Halomonas elongata, for monitoring metals in high salinity environments. Journal of Biotechnology, 150, S226. DOI: 10.1016/j.jbiotec.2010.09.062. http://dx.doi.org/10.1016/j.jbiotec.2010.09.06210.1016/j.jbiotec.2010.09.062Search in Google Scholar

[97] Nam, J. M., Thaxton, C. S., & Mirkin, C. A. (2003). Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science, 301, 1884–1886. DOI: 10.1126/science. 1088755. http://dx.doi.org/10.1126/science.108875510.1126/scienceSearch in Google Scholar

[98] Neubert, H., Jacoby, E. S., Bansal, S. S., Iles, R. K., Cowan, D. A., & Kicman, A. T. (2002). Enhanced affinity capture MALDI-TOFMS: Orientation of an immunoglobulin G using recombinant protein G. Analytical Chemistry, 74, 3677–3683. DOI: 10.1021/ac025558z. http://dx.doi.org/10.1021/ac025558z10.1021/ac025558zSearch in Google Scholar PubMed

[99] Orski, S. V., Fries, K. H., Sontag, S. K., & Locklin, J. (2011). Fabrication of nanostructures using polymer brushes. Journal of Materials Chemistry, 21, 14135–14149. DOI: 10.1039/c1jm11039j. http://dx.doi.org/10.1039/c1jm11039j10.1039/c1jm11039jSearch in Google Scholar

[100] Pathak, S., Singh, A. K., McElhanon, J. R., & Dentinger, P. M. (2004). Dendrimer-activated surfaces for high density and high activity protein chip applications. Langmuir, 20, 6075–6079. DOI: 10.1021/la036271f. http://dx.doi.org/10.1021/la036271f10.1021/la036271fSearch in Google Scholar PubMed

[101] Pertsin, A. J., & Grunze, M. (2000). Computer simulation of water near the surface of oligo(ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir, 16, 8829–8841. DOI: 10.1021/la000340y. http://dx.doi.org/10.1021/la000340y10.1021/la000340ySearch in Google Scholar

[102] Peyman, S. A., Iles, A., & Pamme, N. (2009). Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow. Lab on a Chip, 9, 3110–3117. DOI: 10.1039/b904724g. http://dx.doi.org/10.1039/b904724g10.1039/b904724gSearch in Google Scholar PubMed

[103] Peyratout, C. S., & Dähne, L. (2004). Tailor-made polyelectrolyte microcapsules: From multilayers to smart containers. Angewandte Chemie International Edition, 43, 3762–3783. DOI: 10.1002/anie.200300568. http://dx.doi.org/10.1002/anie.20030056810.1002/anie.200300568Search in Google Scholar PubMed

[104] Picart, C. (2008). Polyelectrolyte multilayer films: From physico-chemical properties to the control of cellular processes. Current Medicinal Chemistry, 15, 685–697. DOI: 10.2174/092986708783885219. http://dx.doi.org/10.2174/09298670878388521910.2174/092986708783885219Search in Google Scholar PubMed

[105] Potyrailo, R. A., McCloskey, P. J., Wroczynski, R. J., & Morris, W. G. (2006). High-throughput determination of quantitative structure-property relationships using a resonant multisensor system: Solvent resistance of bisphenol A polycarbonate copolymers. Analytical Chemistry, 78, 3090–3096. DOI: 10.1021/ac0519662. http://dx.doi.org/10.1021/ac051966210.1021/ac0519662Search in Google Scholar PubMed

[106] Potyrailo, R., Rajan, K., Stoewe, K., Takeuchi, I., Chisholm, B., & Lam, H. (2011). Combinatorial and high-throughput screening of materials libraries: Review of state of the art. ACS Combinatorial Science, 13, 579–633. DOI: 10.1021/co200007w. http://dx.doi.org/10.1021/co200007w10.1021/co200007wSearch in Google Scholar PubMed

[107] Rahane, S. B., Kilbey, S. M., & Metters, A. T. (2008). Kinetic modeling of surface-initiated photoiniferter-mediated photopolymerization in presence of tetraethylthiuram disulfide. Macromolecules, 41, 9612–9618. DOI: 10.1021/ma702516w. http://dx.doi.org/10.1021/ma702516w10.1021/ma702516wSearch in Google Scholar

[108] Rahane, S. B., Metters, A. T., & Kilbey, S. M. (2006). Impact of added tetraethylthiuram disulfide deactivator on the kinetics of growth and reinitiation of poly(methyl methacrylate) brushes made by surface-initiated photoiniferter-mediated photopolymerization. Macromolecules, 39, 8987–8991. DOI: 10.1021/ma0617217. http://dx.doi.org/10.1021/ma061721710.1021/ma0617217Search in Google Scholar

[109] Rahane, S. B., Metters, A. T., & Kilbey, S. M. (2010). Modeling of reinitiation ability of polymer brushes grown by surface-initiated photoiniferter-mediated photopolymerization. Journal of Polymer Science Part A: Polymer Chemistry, 48, 1586–1593. DOI: 10.1002/pola.23913. http://dx.doi.org/10.1002/pola.2391310.1002/pola.23913Search in Google Scholar

[110] Ramanathan, K., Bangar, M. A., Yun, M., Chen, W., Myung, N. V., & Mulchandani, A. (2005). Bioaffinity sensing using biologically functionalized conducting-polymer nanowire. Journal of the American Chemical Society, 127, 496–497. DOI: 10.1021/ja044486l. http://dx.doi.org/10.1021/ja044486l10.1021/ja044486lSearch in Google Scholar PubMed

[111] Reynolds, C. H. (1999). Designing diverse and focused combinatorial libraries of synthetic polymers. Journal of Combinatorial Chemistry, 1, 297–306. DOI: 10.1021/cc9900044. http://dx.doi.org/10.1021/cc990004410.1021/cc9900044Search in Google Scholar

[112] Rodriguez-Emmenegger, C., Avramenko, O. A., Brynda, E., Skvor, J., & Bologna Alles, A. (2011). Poly(HEMA) brushes emerging as a new platform for direct detection of food pathogen in milk samples. Biosensors and Bioelectronics, 26, 4545–4551. DOI: 10.1016/j.bios.2011.05.021. http://dx.doi.org/10.1016/j.bios.2011.05.02110.1016/j.bios.2011.05.021Search in Google Scholar PubMed

[113] Rogers, D., & Hopfinger, A. J. (1994). Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. Journal of Chemical Information and Modeling, 34, 854–866. DOI: 10.1021/ci00020a020. http://dx.doi.org/10.1021/ci00020a02010.1021/ci00020a020Search in Google Scholar

[114] Sardesai, N. P., Barron, J. C., & Rusling, J. F. (2011). Carbon nanotube microwell array for sensitive electrochemilu-minescent detection of cancer biomarker proteins. Analytical Chemistry, 83, 6698–6703. DOI: 10.1021/ac201292q. 10.1021/ac201292qSearch in Google Scholar

[115] Schubert, D. W., & Dunkel, T. (2003). Spin coating from a molecular point of view: its concentration regimes, influence of molar mass and distribution. Materials Research Innovations, 7, 314–321. DOI: 10.1007/s10019-003-0270-2. http://dx.doi.org/10.1007/s10019-003-0270-210.1007/s10019-003-0270-2Search in Google Scholar

[116] Shen, M., Wagner, M. S., Castner, D. G., Ratner, B. D., & Horbett, T. A. (2003). Multivariate surface analysis of plasma-deposited tetraglyme for reduction of protein adsorption and monocyte adhesion. Langmuir, 19, 1692–1699. DOI: 10.1021/la0259297. http://dx.doi.org/10.1021/la025929710.1021/la0259297Search in Google Scholar

[117] Shimura, M., & Hayakawa, T. (2010). Development of a biosensor for toluene in water. Journal of Biotechnology, 150, S214. DOI: 10.1016/j.jbiotec.2010.09.033. http://dx.doi.org/10.1016/j.jbiotec.2010.09.03310.1016/j.jbiotec.2010.09.033Search in Google Scholar

[118] Statz, A. R., Barron, A. E., & Messersmith, P. B. (2008). Protein, cell and bacterial fouling resistance of polypeptoidmodified surfaces: effect of side-chain chemistry. Soft Matter, 4, 131–139. DOI: 10.1039/b711944e. http://dx.doi.org/10.1039/b711944e10.1039/B711944ESearch in Google Scholar

[119] Statz, A. R., Meagher, R. J., Barron, A. E., & Messersmith, P. B. (2005). New peptidomimetic polymers for antifouling surfaces. Journal of the American Chemical Society, 127, 7972–7973. DOI: 10.1021/ja0522534. http://dx.doi.org/10.1021/ja052253410.1021/ja0522534Search in Google Scholar

[120] Stein, J., Truby, K., Wood, C. D., Takemori, M., Vallance, M., Swain, G., Kavanagh, C., Kovach, B., Schultz, M., Wiebe, D., Holm, E., Montemarano, J., Wendt, D., Smith, C., & Meyer, A. (2003). Structure-property relationships of silicone biofouling-release coatings: Effect of silicone network architecture on pseudobarnacle attachment strengths. Biofouling, 19, 87–94. DOI: 10.1080/0892701031000095221. http://dx.doi.org/10.1080/089270103100009522110.1080/0892701031000095221Search in Google Scholar

[121] Steinhauer, C., Wingren, C., Khan, F., He, M., Taussig, M. J., & Borrebaeck, C. A. K. (2006). Improved affinity coupling for antibody microarrays: Engineering of double-(His)6-tagged single framework recombinant antibody fragments. PROTEOMICS, 6, 4227–4234. DOI: 10.1002/pmic.200600036. http://dx.doi.org/10.1002/pmic.20060003610.1002/pmic.200600036Search in Google Scholar

[122] Steitz, R., Leiner, V., Siebrecht, R., & v. Klitzing, R. (2000). Influence of the ionic strength on the structure of polyelectrolyte films at the solid/liquid interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 163, 63–70. DOI: 10.1016/s0927-7757(99)00431-8. http://dx.doi.org/10.1016/S0927-7757(99)00431-810.1016/S0927-7757(99)00431-8Search in Google Scholar

[123] Stockton, W. B., & Rubner, M. F. (1997). Molecular-level processing of conjugated polymers. 4. Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions. Macromolecules, 30, 2717–2725. DOI: 10.1021/ma9700486. http://dx.doi.org/10.1021/ma970048610.1021/ma9700486Search in Google Scholar

[124] Suh, C., Rajagopalan, A., Li, X., & Rajan, K. (2002). The application of Principal Component Analysis to materials science data. Data Science Journal, 1, 19–26. DOI: 10.2481/dsj.1.19. http://dx.doi.org/10.2481/dsj.1.1910.2481/dsj.1.19Search in Google Scholar

[125] Swain, M. D., Octain, J., & Benson, D. E. (2008). Unimolecular, soluble semiconductor nanoparticle-based biosensors for thrombin using charge/electron transfer. Bioconjugate Chemistry, 19, 2520–2526. DOI: 10.1021/bc8003952. http://dx.doi.org/10.1021/bc800395210.1021/bc8003952Search in Google Scholar PubMed

[126] Tajima, N., Takai, M., & Ishihara, K. (2011). Significance of antibody orientation unraveled: Well-oriented antibodies recorded high binding affinity. Analytical Chemistry, 83, 1969–1976. DOI: 10.1021/ac1026786. http://dx.doi.org/10.1021/ac102678610.1021/ac1026786Search in Google Scholar PubMed

[127] Tawa, K., Yokota, Y., Kintaka, K., Nishii, J., & Nakaoki, T. (2011). An application of a plasmonic chip with enhanced fluorescence to a simple biosensor with extended dynamic range. Sensors and Actuators B: Chemical, 157, 703–709. DOI: 10.1016/j.snb.2011.04.086. http://dx.doi.org/10.1016/j.snb.2011.04.08610.1016/j.snb.2011.04.086Search in Google Scholar

[128] Taylor, W., & Jones, R. A. L. (2010). Producing high-density high-molecular-weight polymer brushes by a “grafting to” method from a concentrated homopolymer solution. Langmuir, 26, 13954–13958. DOI: 10.1021/la101881j. http://dx.doi.org/10.1021/la101881j10.1021/la101881jSearch in Google Scholar PubMed

[129] Tetko, I. V., Villa, A. E. P., & Livingstone, D. J. (1996). Neural network studies. 2. Variable selection. Journal of Chemical Information and Modeling, 36, 794–803. DOI: 10.1021/ci950204c. http://dx.doi.org/10.1021/ci950204c10.1021/ci950204cSearch in Google Scholar PubMed

[130] Tria, M. C. R., & Advincula, R. C. (2011). Electropatterning of binary polymer brushes by surface-initiated RAFT and ATRP. Macromolecular Rapid Communications, 32, 966–971. DOI: 10.1002/marc.201100050. http://dx.doi.org/10.1002/marc.20110005010.1002/marc.201100050Search in Google Scholar PubMed

[131] Tsai, H. Y., Chan, J. R., Li, Y. C., Cheng, F. C., & Bor Fuh, C. (2010). Determination of hepatitis B surface antigen using magnetic immunoassays in a thin channel. Biosensors and Bioelectronics, 25, 2701–2705. DOI: 10.1016/j.bios.2010.04.035. http://dx.doi.org/10.1016/j.bios.2010.04.03510.1016/j.bios.2010.04.035Search in Google Scholar PubMed

[132] v. Klitzing, R. (2006). Internal structure of polyelectrolyte multilayer assemblies. Physical Chemistry Chemical Physics, 8, 5012–5033. DOI: 10.1039/b607760a. http://dx.doi.org/10.1039/b607760a10.1039/b607760aSearch in Google Scholar PubMed

[133] Vaisocherová, H., Yang, W., Zhang, Z., Cao, Z., Cheng, G., Piliarik, M., Homola, J., & Jiang, S. (2008). Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Analytical Chemistry, 80, 7894–7901. DOI: 10.1021/ac8015888. http://dx.doi.org/10.1021/ac801588810.1021/ac8015888Search in Google Scholar PubMed

[134] Vaisocherová, H., Zhang, Z., Yang, W., Cao, Z., Cheng, G., Taylor, A. D., Piliarik, M., Homola, J., & Jiang, S. (2009). Functionalizable surface platform with reduced nonspecific protein adsorption from full blood plasma-Material selection and protein immobilization optimization. Biosensors and Bioelectronics, 24, 1924–1930. DOI: 10.1016/j.bios.2008.09.035. http://dx.doi.org/10.1016/j.bios.2008.09.03510.1016/j.bios.2008.09.035Search in Google Scholar PubMed

[135] Vallina-García, R., García-Suárez, M. del M., Fernández-Abedul, M. T., Méndez, F. J., & Costa-García, A. (2007). Oriented immobilisation of anti-pneumolysin Fab through a histidine tag for electrochemical immunosensors. Biosensors and Bioelectronics, 23, 210–217. DOI: 10.1016/j.bios.2007.04.001. http://dx.doi.org/10.1016/j.bios.2007.04.00110.1016/j.bios.2007.04.001Search in Google Scholar PubMed

[136] Vijayendran, R. A., & Leckband, D. E. (2001). A quantitative assessment of heterogeneity for surface-immobilized proteins. Analytical Chemistry, 73, 471–480. DOI: 10.1021/ac000523p. http://dx.doi.org/10.1021/ac000523p10.1021/ac000523pSearch in Google Scholar PubMed

[137] Wang, Y., Dostalek, J., & Knoll, W. (2011a). Magnetic nanoparticle-enhanced biosensor based on grating-coupled surface plasmon resonance. Analytical Chemistry, 83, 6202–6207. DOI: 10.1021/ac200751s. http://dx.doi.org/10.1021/ac200751s10.1021/ac200751sSearch in Google Scholar PubMed

[138] Wang, L., Fu, Y., Wang, Z., Fan, Y., & Zhang, X. (1999). Investigation into an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding. Langmuir, 15, 1360–1363. DOI: 10.1021/la981181+. http://dx.doi.org/10.1021/la981181+10.1021/la981181+Search in Google Scholar

[139] Wang, G., Gao, Y., Huang, H., & Su, X. (2010). Multiplex immunoassays of equine virus based on fluorescent encoded magnetic composite nanoparticles. Analytical and Bioanalytical Chemistry, 398, 805–813. DOI: 10.1007/s00216-010-4001-4. http://dx.doi.org/10.1007/s00216-010-4001-410.1007/s00216-010-4001-4Search in Google Scholar PubMed

[140] Wang, J. S., & Matyjaszewski, K. (1995). Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society, 117, 5614–5615. DOI: 10.1021/ja00125a035. 10.1021/ja00125a035Search in Google Scholar

[141] Wang, J., Song, D., Wang, L., Zhang, H., Zhang, H., & Sun, Y. (2011b). Design and performances of immunoassay based on SPR biosensor with Au/Ag alloy nanocomposites. Sensors and Actuators B: Chemical, 157, 547–553. DOI: 10.1016/j.snb.2011.05.020. http://dx.doi.org/10.1016/j.snb.2011.05.02010.1016/j.snb.2011.05.020Search in Google Scholar

[142] Wang, L., Tang, G., & Xu, Z. K. (2008). Comparison of waterbased and solvent-based tape casting for preparing multilayer ZnO varistors. Journal of the American Ceramic Society, 91, 3742–3745. DOI: 10.1111/j.1551-2916.2008.02677.x. http://dx.doi.org/10.1111/j.1551-2916.2008.02677.x10.1111/j.1551-2916.2008.02677.xSearch in Google Scholar

[143] Wang, B., Weldon, A. L., Kumnorkaew, P., Xu, B., Gilchrist, J. F., & Cheng, X. (2011c). Effect of surface nanotopography on immunoaffinity cell capture in microfluidic devices. Langmuir, 27, 11229–11237. DOI: 10.1021/la2015868. http://dx.doi.org/10.1021/la201586810.1021/la2015868Search in Google Scholar PubMed

[144] Whitcombe, M. J., Chianella, I., Larcombe, L., Piletsky, S. A., Noble, J., Porter, R., & Horgan, A. (2011). The rational development of molecularly imprinted polymer-based sensors for protein detection. Chemical Society Reviews, 40, 1547–1571. DOI: 10.1039/c0cs00049c. http://dx.doi.org/10.1039/c0cs00049c10.1039/C0CS00049CSearch in Google Scholar

[145] White, A., & Jiang, S. (2011). Local and bulk hydration of zwitterionic glycine and its analogues through molecular simulations. The Journal of Physical Chemistry B, 115, 660–667. DOI: 10.1021/jp1067654. http://dx.doi.org/10.1021/jp106765410.1021/jp1067654Search in Google Scholar PubMed

[146] Wichterle, O., & Lím, D. (1960). Hydrophilic gels for biological use. Nature, 185, 117–118. DOI: 10.1038/185117a0. http://dx.doi.org/10.1038/185117a010.1038/185117a0Search in Google Scholar

[147] Wyszogrodzka, M., & Haag, R. (2009). Synthesis and characterization of glycerol dendrons, self-assembled monolayers on gold: A detailed study of their protein resistance. Biomacromolecules, 10, 1043–1054. DOI: 10.1021/bm801093t. http://dx.doi.org/10.1021/bm801093t10.1021/bm801093tSearch in Google Scholar PubMed

[148] Yang, W., Chen, S., Cheng, G., Vaisocherová, H., Xue, H., Li, W., Zhang, J., & Jiang, S. (2008). Film thickness dependence of protein adsorption from blood serum and plasma onto poly(sulfobetaine)-grafted surfaces. Langmuir, 24, 9211–9214. DOI: 10.1021/la801487f. http://dx.doi.org/10.1021/la801487f10.1021/la801487fSearch in Google Scholar PubMed

[149] Yang, M., Tsang, E. M. W., Wang, Y. A., Peng, X., & Yu, H. Z. (2005). Bioreactive surfaces prepared via the self-assembly of dendron thiols and subsequent dendrimer bridging reactions. Langmuir, 21, 1858–1865. DOI: 10.1021/la047459h. http://dx.doi.org/10.1021/la047459h10.1021/la047459hSearch in Google Scholar PubMed

[150] Yang, W., Xue, H., Li, W., Zhang, J., & Jiang, S. (2009). Pursuing “zero” protein adsorption of poly(carboxybetaine) from undiluted blood serum and plasma. Langmuir, 25, 11911–11916. DOI: 10.1021/la9015788. http://dx.doi.org/10.1021/la901578810.1021/la9015788Search in Google Scholar PubMed

[151] Ye, S., Majumdar, P., Chisholm, B., Stafslien, S., & Chen, Z. (2010a). Antifouling and antimicrobial mechanism of tethered quaternary ammonium salts in a cross-linked poly(dimethylsiloxane) matrix studied using sum frequency generation vibrational spectroscopy. Langmuir, 26, 16455–16462. DOI: 10.1021/la1001539. http://dx.doi.org/10.1021/la100153910.1021/la1001539Search in Google Scholar PubMed

[152] Ye, S., Nguyen, K. T., Boughton, A. P., Mello, C. M., & Chen, Z. (2010b). Orientation difference of chemically immobilized and physically adsorbed biological molecules on polymers detected at the solid/liquid interfaces in situ. Langmuir, 26, 6471–6477. DOI: 10.1021/la903932w. http://dx.doi.org/10.1021/la903932w10.1021/la903932wSearch in Google Scholar PubMed PubMed Central

[153] Ye, F., Wu, C., Jin, Y., Wang, M., Chan, Y. H., Yu, J., Sun, W., Hayden, S., & Chiu, D. T. (2012). A compact nad highly fluorescent orange-emitting polymer dot for specific subcellular imaging. Chemical Communications, 48, 1778–1780. DOI: 10.1039/c2cc16486h. http://dx.doi.org/10.1039/c2cc16486h10.1039/c2cc16486hSearch in Google Scholar PubMed PubMed Central

[154] Yebra, D. M., Kiil, S., & Dam-Johansen, K. (2004). Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in Organic Coatings, 50, 75–104. DOI: 10.1016/j.porgcoat.2003.06.001. http://dx.doi.org/10.1016/j.porgcoat.2003.06.00110.1016/j.porgcoat.2003.06.001Search in Google Scholar

[155] Yu, X., Munge, B., Patel, V., Jensen, G., Bhirde, A., Gong, J. D., Kim, S. N., Gillespie, J., Gutkind, J. S., Papadimitrakopoulos, F., & Rusling, J. F. (2006). Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. Journal of the American Chemical Society, 128, 11199–11205. DOI: 10.1021/ja062117e. http://dx.doi.org/10.1021/ja062117e10.1021/ja062117eSearch in Google Scholar PubMed PubMed Central

[156] Yuan, S., Wan, D., Liang, B., Pehkonen, S. O., Ting, Y. P., Neoh, K. G., & Kang, E. T. (2011). Lysozyme-coupled poly(poly(ethylene glycol) methacrylate)-stainless steel hybrids and their antifouling and antibacterial surfaces. Langmuir, 27, 2761–2774. DOI: 10.1021/la104442f. http://dx.doi.org/10.1021/la104442f10.1021/la104442fSearch in Google Scholar PubMed

[157] Zan, H. W., & Hsu, T. Y. (2011). Stable encapsulated organic TFT with a spin-coated poly(4-vinylphenol-co-methyl methacrylate) dielectric. Electron Device Letters, IEEE, 32, 1131–1133. DOI: 10.1109/led.2011.2155026. http://dx.doi.org/10.1109/LED.2011.215502610.1109/LED.2011.2155026Search in Google Scholar

[158] Zhang, Z., Chen, S., & Jiang, S. (2006). Dual-functional biomimetic materials: Nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules, 7, 3311–3315. DOI: 10.1021/bm060750m. http://dx.doi.org/10.1021/bm060750m10.1021/bm060750mSearch in Google Scholar PubMed

[159] Zhang, M., & Horbett, T. A. (2009). Tetraglyme coatings reduce fibrinogen and von Willebrand factor adsorption and platelet adhesion under both static and flow conditions. Journal of Biomedical Materials Research Part A, 89A, 791–803. DOI: 10.1002/jbm.a.32085. http://dx.doi.org/10.1002/jbm.a.3208510.1002/jbm.a.32085Search in Google Scholar PubMed PubMed Central

[160] Zhang, H., Lee, M. Y., Hogg, M. G., Dordick, J. S., & Sharfstein, S. T. (2010a). Gene delivery in three-dimensional cell cultures by superparamagnetic nanoparticles. ACS Nano, 4, 4733–4743. DOI: 10.1021/nn9018812. http://dx.doi.org/10.1021/nn901881210.1021/nn9018812Search in Google Scholar PubMed

[161] Zhang, X., Teng, Y., Fu, Y., Xu, L., Zhang, S., He, B., Wang, C., & Zhang, W. (2010b). Lectin-based biosensor strategy for electrochemical assay of glycan expression on living cancer cells. Analytical Chemistry, 82, 9455–9460. DOI: 10.1021/ac102132p. http://dx.doi.org/10.1021/ac102132p10.1021/ac102132pSearch in Google Scholar PubMed

[162] Zhang, Z., Zhang, M., Chen, S., Horbett, T. A., Ratner, B. D., & Jiang, S. (2008). Blood compatibility of surfaces with superlow protein adsorption. Biomaterials, 29, 4285–4291. DOI: 10.1016/j.biomaterials.2008.07.039. http://dx.doi.org/10.1016/j.biomaterials.2008.07.03910.1016/j.biomaterials.2008.07.039Search in Google Scholar PubMed

[163] Zhao, C., Li, L., Wang, Q., Yu, Q., & Zheng, J. (2011). Effect of film thickness on the antifouling performance of poly(hydroxy-functional methacrylates) grafted surfaces. Langmuir, 27, 4906–4913. DOI: 10.1021/la200061h. http://dx.doi.org/10.1021/la200061h10.1021/la200061hSearch in Google Scholar PubMed

[164] Zhao, C., Li, L., & Zheng, J. (2010). Achieving highly effective nonfouling performance for surface-grafted poly(HPMA) via atom-transfer radical polymerization. Langmuir, 26, 17375–17382. DOI: 10.1021/la103382j. http://dx.doi.org/10.1021/la103382j10.1021/la103382jSearch in Google Scholar PubMed

[165] Zhao, C., & Zheng, J. (2011). Synthesis and characterization of poly(N-hydroxyethylacrylamide) for long-term antifouling ability. Biomacromolecules, 12, 4071–4079. DOI: 10.1021/bm2011455. http://dx.doi.org/10.1021/bm201145510.1021/bm2011455Search in Google Scholar PubMed

[166] Zheng, J., Li, L., Chen, S., & Jiang, S. (2004). Molecular simulation study of water interactions with oligo (ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir, 20, 8931–8938. DOI: 10.1021/la036345n. http://dx.doi.org/10.1021/la036345n10.1021/la036345nSearch in Google Scholar PubMed

[167] Zheng, J., Li, L., Tsao, H. K., Sheng, Y. J., Chen, S., & Jiang, S. (2005). Strong repulsive forces between protein and oligo (ethylene glycol) self-assembled monolayers: A molecular simulation study. Biophysical Journal, 89, 158–166. DOI: 10.1529/biophysj.105.059428. http://dx.doi.org/10.1529/biophysj.105.05942810.1529/biophysj.105.059428Search in Google Scholar PubMed PubMed Central

[168] Zhou, J., Chen, S., & Jiang, S. (2003). Orientation of adsorbed antibodies on charged surfaces by computer simulation based on a united-residue model. Langmuir, 19, 3472–3478. DOI: 10.1021/la026871z. http://dx.doi.org/10.1021/la026871z10.1021/la026871zSearch in Google Scholar

Published Online: 2012-4-5
Published in Print: 2012-5-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-012-0147-1/html
Scroll to top button