Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 28, 2009

Kinetics of catalytic Meerwein-Ponndorf-Verley reduction of aldehydes and ketones using boron triethoxide

  • Burcu Uysal EMAIL logo and Birsen Buyuktas
From the journal Chemical Papers

Abstract

Catalytic Meerwein-Ponndorf-Verley (MPV) reduction of various aliphatic, aromatic, and unsaturated aldehydes and ketones to corresponding alcohols (analyzed by GC-MS) in the presence of boron triethoxide (B(OEt)3) were studied. Kinetics of this reduction reaction was also studied and the respective rate constants were determined. It was found that B(OEt)3 catalyzes the reduction of aliphatic aldehydes and ketones to alcohols at room temperature while aromatic aldehydes and ketones were not reduced under the same conditions. In addition, MPV reduction using B(OEt)3 was found to be chemoselective as unsaturated aldehydes and ketones afforded the corresponding alcohols without affecting unsaturated groups. The mechanism proposed involves a six-membered transition state in which both the alcohol and the carbonyl are coordinated to the same boron centre of a boron alkoxide catalyst.

[1] Aramendía, M. A., Borau, V., Jiménez, C., Marinas, J. M., Ruiz, J. R., & Urbano, F. J. (2001). Activity of basic catalysts in the Meerwein-Ponndorf-Verley reaction of benzaldehyde with ethanol. Journal of Colloid and Interface Science, 238, 385–389. DOI: 10.1006/jcis.2001.7519. http://dx.doi.org/10.1006/jcis.2001.751910.1006/jcis.2001.7519Search in Google Scholar

[2] Cha, J. S., & Park, J. H. (2002). Reaction of aldehydes and ketones with boron triisopropoxide. 1. The Meerwein-Ponndorf-Verley type reduction of boron alkoxides. Bulletin of the Korean Chemical Society, 23, 1051–1052. http://dx.doi.org/10.5012/bkcs.2002.23.8.105110.5012/bkcs.2002.23.8.1051Search in Google Scholar

[3] Creyghton, E. J., Ganeshie, S. D., Downing, R. S., & van Bekkum, H. (1997a). Stereoselective Meerwein-Ponndorf-Verley and Oppenauer reactions catalysed by zeolite BEA. Journal of Molecular Catalysis A: Chemical, 115, 457–472. DOI: 10.1016/S1381-1169(96)00351-2. http://dx.doi.org/10.1016/S1381-1169(96)00351-210.1016/S1381-1169(96)00351-2Search in Google Scholar

[4] Creyghton, E. J., Huskens, J., van der Waal, J. C., & van Bekkum, H. (1997b). Meerwein-Ponndorf-Verley and Oppenauer reactions catalysed by heterogeneous catalysts. In H. U. Blaser, A. Baiker, & R. Prins (Eds.), Heterogeneous catalysis and fine chemicals IV (Series: Studies in surface science and catalysis, Vol. 108, Chapter 66, pp. 531-537). Amsterdam, The Netherlands: Elsevier. 10.1016/S0167-2991(97)80947-0Search in Google Scholar

[5] de Graauw, C. F., Peters, J. A., van Bekkum, H., & Huskens, J. (1994). Meerwein-Ponndorf-Verley reductions and Oppenauer oxidations: An integrated approach. Synthesis, 10, 1007–1017. DOI: 10.1055/s-1994-25625. http://dx.doi.org/10.1055/s-1994-2562510.1055/s-1994-25625Search in Google Scholar

[6] Furniss, B. S., Hannaford, A. J., Smith, P. W. G., & Tatchell, A. R. (1989). Vogel’s textbook of practical organic chemistry (5th ed.). Harlow, UK: Pearson Education Limited. Search in Google Scholar

[7] Ishii, Y., Nakano, T., Inada, A., Kishigami, Y., Sakurai, K., & Ogawa, M. (1986). Meerwein-Ponndorf-Verley type reduction of ketones and Oppenauer type oxidation of alcohols under the influence of Cp2ZrH2. The Journal of Organic Chemistry, 51, 240–242. DOI: 10.1021/jo00352a021. http://dx.doi.org/10.1021/jo00352a02110.1021/jo00352a021Search in Google Scholar

[8] Klomp, D., Maschmeyer, T., Hanefeld, U., & Peters, J. A. (2004). Mechanism of homogeneously and heterogeneously catalysed Meerwein-Ponndorf-Verley-Oppenauer reactions for the racemisation of secondary alcohols. Chemistry — A European Journal, 10, 2088–2093. DOI: 10.1002/chem.200305 460. http://dx.doi.org/10.1002/chem.200305460Search in Google Scholar

[9] Knauer, B., & Krohn, K. (1995). A reinvestigation of the Meerwein-Ponndorf-Verley reduction. A highly efficient variation using zirconium catalysts. Liebigs Annalen, 1995, 677–683. DOI: 10.1002/jlac.199519950496. http://dx.doi.org/10.1002/jlac.19951995049610.1002/jlac.199519950496Search in Google Scholar

[10] Kroschwitz, J. I., & Howe-Grant, M. (1992). Boric acid esters. In J. I. Kroschwitz, & M. Howe-Grant (Eds.), Kirk-Othmer encyclopedia of chemical technology (4th ed., Vol. 4, pp. 413–423). New York, NY, USA: Wiley. Search in Google Scholar

[11] Lermontov, S. A., Shkavrov, S. V., & Kuryleva, N. V. (2003). Uncatalyzed Meerwein-Ponndorf-Verley reduction of trifluoromethyl carbonyl compounds by high-temperature secondary alcohols. Journal of Fluorine Chemistry, 121, 223–225. DOI: 10.1016/S0022-1139(03)00036-8. http://dx.doi.org/10.1016/S0022-1139(03)00036-810.1016/S0022-1139(03)00036-8Search in Google Scholar

[12] Liu, S. H., Jaenicke, S., & Chuah, G. K. (2002). Hydrous zirconia as a selective catalyst for the Meerwein-Ponndorf-Verley reduction of cinnamaldehyde. Journal of Catalysis, 206, 321–330. DOI: 10.1006/jcat.2001.3480. http://dx.doi.org/10.1006/jcat.2001.348010.1006/jcat.2001.3480Search in Google Scholar

[13] Meerwein, H., & Schmidt, R. (1925). Ein neues Verfahren zur Reduktion von Aldehyden und Ketonen. Justus Liebigs Annalen der Chemie, 444, 221–238. DOI: 10.1002/jlac19254440 http://dx.doi.org/10.1002/jlac.19254440112Search in Google Scholar

[14] Namy, J. L., Souppe J., Collin, J., & Kagan, H. B. (1984). New preparations of lanthanide alkoxides and their catalyt ical activity in Meerwein-Ponndorf-Verley-Oppenauer reactions. The Journal of Organic Chemistry, 49, 2045–2049. DOI: 10.1021/jo00185a053. http://dx.doi.org/10.1021/jo00185a05310.1021/jo00185a053Search in Google Scholar

[15] Narayanan, S. (2003). Selective hydrogenation of unsaturated aldehydes and ketones. Bulletin of the Catalysis Society of India, 2, 107–121. Search in Google Scholar

[16] Ruiz, J. R., Jiménez-Sanchidrián, C., Hidalgo, J. M., & Marinas, J. M. (2006). Reduction of ketones and aldehydes to alcohols with magnesium-aluminium mixed oxide and 2-propanol. Journal of Molecular Catalysis A: Chemical, 246, 190–194. DOI: 10.1016/j.molcata.2005.11.002. http://dx.doi.org/10.1016/j.molcata.2005.11.00210.1016/j.molcata.2005.11.002Search in Google Scholar

[17] Uysal, B., & Buyuktas, B. S. (2007). Chemoselective reduction of aldehydes and ketones to alcohols using boron triisopropoxide, B(O-i-Pr)3 and boron tri-secondary butoxide, B(O-s-Bu)3 as catalysts. Arkivoc, 14, 134–140. 10.3998/ark.5550190.0008.e14Search in Google Scholar

[18] van der Waal, J. C., Kunkeler, P. J., Tan, K., & van Bekkum, H. (1998). Zeolite titanium beta: A selective catalyst for the gas-phase Meerwein-Ponndorf-Verley, and Oppenauer reactions. Journal of Catalysis, 173, 74–83. DOI: 10.1006/jcat.1997.1901. 10.1006/jcat.1997.1901Search in Google Scholar

[19] Zhu, Y., Jaenicke, S., & Chuah, G. K. (2003). Supported zirconium propoxide-a versatile heterogeneous catalyst for the Meerwein-Ponndorf-Verley reduction. Journal of Catalysis, 218, 396–404. DOI: 10.1016/S0021-9517(03)00160-X. http://dx.doi.org/10.1016/S0021-9517(03)00160-X10.1016/S0021-9517(03)00160-XSearch in Google Scholar

[20] Zhu, Y., Liu, S., Jaenicke, S., & Chuah, G. (2004). Zirconia catalysts inMeerwein-Ponndorf-Verley reduction of citral. Catalysis Today, 97, 249–255. DOI: 10.1016/j.cattod.2004.07.002. http://dx.doi.org/10.1016/j.cattod.2004.07.00210.1016/j.cattod.2004.07.002Search in Google Scholar

Published Online: 2009-11-28
Published in Print: 2010-2-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-009-0098-3/html
Scroll to top button