Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter March 26, 2014

Myricetin blocks lipoteichoic acid-induced COX-2 expression in human gingival fibroblasts

  • Gloria Gutiérrez-Venegas EMAIL logo , Oscar Luna , Juan Arreguín-Cano and Cristina Hernández-Bermúdez

Abstract

Periodontitis is an infectious disease caused by microorganisms present in dental bacterial plaque. Lipoteichoic acid (LTA) is a component of the external membrane of Gram-positive bacteria. It causes septic shock. Ingested flavonoids have been reported to directly affect the regulation of cyclooxygenase-2 (COX-2) expression induced by bacterial toxins. In this study, we examined the effects of four flavonoids (luteolin, fisetin, morin and myricetin) on the activation of ERK1/2, p38 and AKT, and on the synthesis of COX-2 in human gingival fibroblasts treated with LTA from Streptococcus sanguinis. We found that luteolin and myricetin blocked AKT and p38 activation and that myricetin blocked LTA-induced COX-2 expression. The results of our study are important for elucidating the mechanism of action of flavonoid regulation of inflammatory responses.

[1] Gutiérrez-Venegas, G. and Cardoso-Jiménez, P. Lipoteichoic acid promotes accumulation of β-catenin via AKT in human gingival fibroblasts. Int. Immunopharmacol. 11 (2011) 1278–1284. http://dx.doi.org/10.1016/j.intimp.2011.04.00810.1016/j.intimp.2011.04.008Search in Google Scholar PubMed

[2] Gutiérrez-Venegas, G., Contreras-Marmolejo, L.A., Román-Alvárez, P. and Barajas-Torres, C. Aggregatibacter actinomicetemcomitans lipopolysaccharide affects human gingival fibroblast cytoskeletal organization. Cell Biol. Int. 32 (2008) 417–426. http://dx.doi.org/10.1016/j.cellbi.2007.12.01310.1016/j.cellbi.2007.12.013Search in Google Scholar PubMed

[3] Gutiérrez-Venegas, G. and Contreras-Sánchez, A. Luteolin and fisetin inhibit the effects of lipopolysaccharide obtained from Porphyromonas gingivalis in human gingival fibroblasts. Mol. Biol. Rep. 40 (2013) 477–485. http://dx.doi.org/10.1007/s11033-012-2083-010.1007/s11033-012-2083-0Search in Google Scholar PubMed

[4] Graves, D. Cytokines that promote periodontal tissue destruction. J. Periodontol. 79 (2008) 1585–1591. http://dx.doi.org/10.1902/jop.2008.08018310.1902/jop.2008.080183Search in Google Scholar PubMed

[5] Kinane, D.F. and Bartold, P. Clinical relevance of the host responses of periodontitis. Periodontol 2000 43 (2007) 278–293. http://dx.doi.org/10.1111/j.1600-0757.2006.00169.x10.1111/j.1600-0757.2006.00169.xSearch in Google Scholar PubMed

[6] Takashiba, S., Takigawa, M., Takahashi, K., Myokai, F., Nishimura F., Chihatra, T., Kurihara, H., Nomura, Y and Murayama, Y. Interleukin-8 is a major neutrophil chemotactic factor derived from cultured human gingival fibroblasts stimulated with interleukin-1 beta or tumor necrosis factor alpha. Infect. Immun. 60 (1992) 5253–5258. Search in Google Scholar

[7] Hosokawa, Y., Hosokawa, I., Ozaki, K., Nakae, H. and Matsuo, T. Increase of CCL20 expression by human gingival fibroblasts upon stimulation with cytokines and bacterial endotoxin. Clin. Exp. Immunol. 142 (2005) 285–291. http://dx.doi.org/10.1111/j.1365-2249.2005.02912.x10.1111/j.1365-2249.2005.02912.xSearch in Google Scholar PubMed PubMed Central

[8] Hosokawa, Y., Hosokawa, I., Ozaki, K., Nakae, H. and Matsuo, T. CXC chemokine ligand 16 in periodontal diseases: expression in diseased tissues and production by cytokine-stimulated human gingival fibroblasts. Clin. Exp. Immunol. 149 (2007) 146–154. http://dx.doi.org/10.1111/j.1365-2249.2007.03398.x10.1111/j.1365-2249.2007.03398.xSearch in Google Scholar PubMed PubMed Central

[9] Hosokawa, I., Hosokawa, Y., Ozaki, K., Nakae, H. and Matsuo, T. Adrenomedullin suppresses tumour necrosis factor alpha-induced CXC chemokine ligand 10 production by human gingival fibroblasts. Clin. Exp. Immunol. 152 (2008) 568–575. http://dx.doi.org/10.1111/j.1365-2249.2008.03647.x10.1111/j.1365-2249.2008.03647.xSearch in Google Scholar PubMed PubMed Central

[10] Hosokawa, Y., Hosokawa, I., Ozaki, K., Nakae, H. and Matsuo, T. CC chemokine ligand 17 in periodontal diseases: expression in diseased tissues and production by human gingival fibroblasts. J. Periodontal Res. 43 (2008) 471–477. http://dx.doi.org/10.1111/j.1600-0765.2007.01080.x10.1111/j.1600-0765.2007.01080.xSearch in Google Scholar PubMed

[11] Hosokawa, Y., Hosokawa, I., Ozaki, K., Nakae, H. and Matsuo, T. Cytokines differentially regulate CXCL10 production by interferon-gammastimulated or tumor necrosis factor-alpha-stimulated human gingival fibroblasts. J. Periodontal Res. 44 (2009) 225–231. http://dx.doi.org/10.1111/j.1600-0765.2008.01124.x10.1111/j.1600-0765.2008.01124.xSearch in Google Scholar PubMed

[12] O’Dell, D.S. and Ebersole, J.L. Avidity of antibody responses to Actinobacillus actinomycetemcomitans in periodontitis. Clin. Exp. Immunol. 101 (1995) 295–301. http://dx.doi.org/10.1111/j.1365-2249.1995.tb08354.x10.1111/j.1365-2249.1995.tb08354.xSearch in Google Scholar PubMed PubMed Central

[13] Fletcher, J.M., Nair, S.P., Ward, J.M., Henderson, B. and Wilson, M. Analysis of the effect of changing envioromental conditions on the expression patterns of exported surface-associated proteins of the oral pathogen Actinobacillus actinomycetemcomitans. Microb. Pathog. 30 (2001) 359–368. http://dx.doi.org/10.1006/mpat.2000.043910.1006/mpat.2000.0439Search in Google Scholar PubMed

[14] Hajishengallis, G., Sojar, H., Genco, R.J. and DeNardin, E. Intracellular signaling and cytokine induction upon interactions of Porphyromonas gingivalis fimbriae with pattern-recognition receptors. Immunol. Invest. 33 (2004) 157–172. http://dx.doi.org/10.1081/IMM-12003091710.1081/IMM-120030917Search in Google Scholar PubMed

[15] Tietze, K., Dalpke, A., Morath, S., Mutters, R., Heeg, K. and Nonnenmacher, C. Differences in innate immune responses upon stimulation with Grampositive and Gram-negative bacteria. J. Periodontal Res. 41 (2006) 447–454. http://dx.doi.org/10.1111/j.1600-0765.2006.00890.x10.1111/j.1600-0765.2006.00890.xSearch in Google Scholar PubMed

[16] Hurttia, H.M., Pelto, L.M. and Leino, L. Evidence of an association between functional abnormalities and defective diacylglycerol kinase activity in peripheral blood neutrophils fromo patients with localized juvenile periodontitis. J. Periodontal Res. 32 (1997) 401–407. http://dx.doi.org/10.1111/j.1600-0765.1997.tb00550.x10.1111/j.1600-0765.1997.tb00550.xSearch in Google Scholar PubMed

[17] Milward, M.R., Chapple, I.L., Wright, H.J., Millard, J.L., Matthews, J.B. and Cooper, P.R. Differential activation of NF-kappaB and gene expression in oral epithelial cells by periodontal pathogens. Clin. Exp. Immunol. 148 (2007) 307–324. http://dx.doi.org/10.1111/j.1365-2249.2007.03342.x10.1111/j.1365-2249.2007.03342.xSearch in Google Scholar PubMed PubMed Central

[18] Yamaguchi, T., Naruishi, K., Arai, H., Nishimura, F. and Takashiba, S. IL-6/sIL-6R enhances cathepsin B and L production via caveolin-1-mediated JNK-AP-1 pathway in human gingival fibroblasts. J. Cell Physiol. 217 (2008) 423–432. http://dx.doi.org/10.1002/jcp.2151710.1002/jcp.21517Search in Google Scholar PubMed

[19] Guan, S.M., Zhang, M., He, J.J. and Wu, J.Z. Mitogen-activated protein kinases and phosphatidylinositol 3-kinase are involved in Prevotella intermedia-induced proinflammatory cytokines expression in human periodontal ligament cells. Biochem. Biophys. Res. Commun. 386 (2009) 471–476. http://dx.doi.org/10.1016/j.bbrc.2009.06.05810.1016/j.bbrc.2009.06.058Search in Google Scholar PubMed

[20] Arai, Y., Watanabe, S., Kimira, M., Shimoi, K., Mochizuki, R. and Kinae, N. Dietary intakes of flavonols, flacones and isoflavones by Japanese women and the inverse correlation between quercetina intake and plasma LDL colesterol concentration. J. Nutr. 130 (2000) 2243–2250. Search in Google Scholar

[21] Maher, P., Dargusch, R., Ehren, J.L., Okada, S., Sharma, K. and Schubert, D. Fisetin powers methylglyoxal dependent protein glycation and limits the complications of diabetes. PLoS ONE 6 (2011) e21226. http://dx.doi.org/10.1371/journal.pone.002122610.1371/journal.pone.0021226Search in Google Scholar PubMed PubMed Central

[22] Lee, S.E., Jeong, S.I., Yang, H., Park, C.S., Jin, Y.H. and Park, Y.S. Fisetin induces Nrf2-mediated HO-1 expression through PKC-d and p38 in human umbilical vein endotelial cells. J. Cell Biochem. 112 (2011) 2352–2360. http://dx.doi.org/10.1002/jcb.2315810.1002/jcb.23158Search in Google Scholar PubMed

[23] Khan, N, Asim, M., Afaq, E., Abu Zaid, M. and Mukhatai, H. A novel dietary flavonoid fisetin inhibits androgen receptor signaling and tumor growth in athymic mude mice. Cancer Res. 68 (2008) 8555–8563. http://dx.doi.org/10.1158/0008-5472.CAN-08-024010.1158/0008-5472.CAN-08-0240Search in Google Scholar

[24] Prasath, G.S. and Subramanian, S.P. Modulatory effects of fisetin a bioflavonoid on hyperglycemia by attenuating the key enzymes of carbohydrate metabolismo in hepatic and renal tissues in streptozotocininduced diabetic rats. Eur. J. Pharmacol. 668 (2011) 492–496. http://dx.doi.org/10.1016/j.ejphar.2011.07.02110.1016/j.ejphar.2011.07.021Search in Google Scholar

[25] Maher, P. Modulation of multiple pathways involved in the maintenance of neuronal function during aging by fisetin. Genes Nutr. 4 (2009) 297–307. http://dx.doi.org/10.1007/s12263-009-0142-510.1007/s12263-009-0142-5Search in Google Scholar

[26] Kitagawa, S., Sakamoto, H. and Tano, H. Inhibitory effects of flavonoids on free radical-induced hemolysis and their oxidative effects on hemoglobin a. Chem. Pharm. Bull. 52 (2004) 999–1001. http://dx.doi.org/10.1248/cpb.52.99910.1248/cpb.52.999Search in Google Scholar

[27] Wu, T.W, Zeng, L.H. and Wu, K.P. Fung. Morin hydrate is a plant-derived and antioxidant-based hepatoprotector. Life Sci. 53 (1993) PL213–PL218. 10.1016/0024-3205(93)90266-6Search in Google Scholar

[28] Galvez, J., Coelho, G., Crespo, M.E., Cruz, T., Rodriguez-Cabezas, M.E., Concha, A., González, M. and Zarzuelo, A. Intestinal anti-inflammatory activity of morin on chronic experimental colitis in the rat. Aliment Pharmacol. Ther. 15 (2001) 2027–2039. http://dx.doi.org/10.1046/j.1365-2036.2001.01133.x10.1046/j.1365-2036.2001.01133.xSearch in Google Scholar PubMed

[29] Lee, K.M., Kang, N.J., Han, J.H., Lee, K.W. and Lee, H.J. Myricetin downregulates phorbol ester-induced cyclooxygenase-2 expression in mouse epidermal cells by blocking activation of nuclear factor kappa B. J. Agric. Food Chem. 55 (2007) 9678–9684. http://dx.doi.org/10.1021/jf071794510.1021/jf0717945Search in Google Scholar PubMed

[30] Lee, K.W., Kang, N.J., Rogozin, E.A., Kim, H.G., Cho, Y.Y., Bode, A.M., Lee, H.J., Surh, Y.J., Bowden, G.T. and Dong, Z. Myricetin is a novel natural inhibitor of neoplastic cell transformation and MEK1. Carcinogenesis 28 (2007) 1918–1927. http://dx.doi.org/10.1093/carcin/bgm11010.1093/carcin/bgm110Search in Google Scholar PubMed

[31] Kumamoto, T., Fujii M. and Hou, D.X. Myricetin directly targets JAK1 to inhibit cell transformation. Cancer Lett. 275 (2009) 17–26. http://dx.doi.org/10.1016/j.canlet.2008.09.02710.1016/j.canlet.2008.09.027Search in Google Scholar PubMed

[32] Kumamoto, T., Fujii, M. and Hou, D.X. AKT is a direct target for myricetin to inhibit cell transformation. Mol. Cell Biochem. 332 (2009) 33–41. http://dx.doi.org/10.1007/s11010-009-0171-910.1007/s11010-009-0171-9Search in Google Scholar PubMed

[33] Kim, J.E, Kwon, J.Y., Lee, D.E., Kang, N.J., Heo, Y.S., Lee, K.W. and Lee, H.J. MKK4 is a novel target for the inhibition of tumor necrosis factor alpha-induced vascular endothelial growth factor expression by myricetin. Biochem. Pharmacol. 77 (2009) 412–421. http://dx.doi.org/10.1016/j.bcp.2008.10.02710.1016/j.bcp.2008.10.027Search in Google Scholar

[34] Jung, S.K, Lee, K.W., Byun, S., Kang, N.J., Lim, S.H., Heo, Y.S., Bode, A.M., Bowde, G.T., Lee H.J. and Dong, Z. Myricetin suppresses UVBinduced skin cancer by targeting Fyn. Cancer Res. 68 (2008) 6021–6029. http://dx.doi.org/10.1158/0008-5472.CAN-08-089910.1158/0008-5472.CAN-08-0899Search in Google Scholar

[35] Qian, L.B., Wang, H.P., Chen, Y., Chen, F.X., Ma, Y.Y., Bruce, I.C. and Xia, Q. Luteolin reduces high glucose-mediated impairment of endotheliumdependent relaxation in rat aorta by reducing oxidative stress. Pharmacol. Res. 61 (2006) 281–287. http://dx.doi.org/10.1016/j.phrs.2009.10.00410.1016/j.phrs.2009.10.004Search in Google Scholar

[36] Horinaka, M., Yoshida, T., Shiraishi, T., Nakata, S., Wakada, M., Nakanishi, R., Nishino, H., Matsui, H. and Sakai, T. Luteolin induces apoptosis via death receptor 5 upregulation in human malignant tumor cells. Oncogene 24 (2005) 7180–7189. http://dx.doi.org/10.1038/sj.onc.120887410.1038/sj.onc.1208874Search in Google Scholar

[37] Ueda, H., Yamazaki, C. and Yamazaki, M. Inhibitory effect of Perilla leaf extract and luteolin on mouse skin tumor promotion. Biol. Pharm. Bull 26 (2003) 560–563. http://dx.doi.org/10.1248/bpb.26.56010.1248/bpb.26.560Search in Google Scholar

[38] Ueda, H., Yamazaki, C. and Yamazaki, M. Luteolin as an anti-inflammatory and anti-allergic constituent of Perilla frutescens. Biol. Pharm. Bull. 25 (2002) 1197–1202. http://dx.doi.org/10.1248/bpb.25.119710.1248/bpb.25.1197Search in Google Scholar

[39] Ueda, H., Yamazaki, C. and Yamazaki, M. Luteolin as an anti-inflammatory and anti-allergic constituent of Perilla flutescens. Biol. Pharm. Bull. 25 (2002) 1197–11202. http://dx.doi.org/10.1248/bpb.25.119710.1248/bpb.25.1197Search in Google Scholar

[40] Gutiérrez-Venegas, G., Kawasaki-Cárdenas, P., Arroyo-Cruz, S.R. and Maldonado-Frías, S. Luteolin inhibits lipopolysaccharide actions on human gingival fibroblasts. Eur. J. Pharmacol. 10 (2006) 95–105. http://dx.doi.org/10.1016/j.ejphar.2006.03.06910.1016/j.ejphar.2006.03.069Search in Google Scholar

[41] Chomczynski, P. and Sachii, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-cloroform extraction. Anal. Biochem. 162 (1987) 156–159. http://dx.doi.org/10.1016/0003-2697(87)90021-210.1016/0003-2697(87)90021-2Search in Google Scholar

[42] Fort, P., Marty, L., Piechaczyk, M., el Sabrouty, S., Dani, C., Jeanteur, P. and Blanchard, J.M. Various rat adult tissues express only one major mRNA species from the glyceraldhyde-2-phosphatre-dehydrogenase multigenic family. Nucleic Acids Res. 13 (1985) 1431–1442. http://dx.doi.org/10.1093/nar/13.5.143110.1093/nar/13.5.1431Search in Google Scholar PubMed PubMed Central

[43] Uehara, A., Sugawara, S., Tamai, R. and Takada, H. Contrasting responses of human gingival and colonic epithelial cells to lipopolysaccharides, lipoteichoic acids and peptidoglycans in the presence of soluble CD14. Med. Microbiol. Immunol. 189 (2001) 185–192. http://dx.doi.org/10.1007/s00430010006310.1007/s004300100063Search in Google Scholar

[44] Pöllänen, M.T., Salonen, J.I., Grenier, D. and Uitto, V.J. Epithelial cell response to challenge of bacterial lipoteichoic acids and lipopolysaccharides in vitro. J. Med. Microbiol. 49 (2000) 245–252. Search in Google Scholar

[45] Liljeroos, M., Vuolteenaho, R., Morath, S., Hartung, T., Hallman, M. and Ojaniemi, M. Bruton’s tyrosine kinase together with PI 3-kinase are part of Toll-like receptor 2 multiprotein complex and mediate LTA induced Tolllike receptor 2 responses in macrophages. Cell Signal. 19 (2007) 625–633. http://dx.doi.org/10.1016/j.cellsig.2006.08.01310.1016/j.cellsig.2006.08.013Search in Google Scholar

[46] Lin, C.H., Kuan, I.H., Wang, C.H., Lee, H.M., Lee, W.S., Sheu, J.R., Hsiao, G., Wu, C.H. and Kuo, H.P. Lipoteichoic acid-induced cyclooxygenase-2 expression requires activations of p44/42 and p38 mitogen-activated protein kinase signal pathways. Eur. J. Pharmacol. 450 (2002) 1–9. http://dx.doi.org/10.1016/S0014-2999(02)02002-210.1016/S0014-2999(02)02002-2Search in Google Scholar

[47] Chiang, L.L., Kuo, C.T., Wang, C.H., Chen, T.F., Ho, Y.S., Kuo, H.P. and Lin, C.H. Involvement of nuclear factor-kappaB in lipoteichoic acid-induced cyclooxygenase-2 expression in RAW 264.7 macrophages. J. Pharm. Pharmacol. 55 (2003) 115–123. http://dx.doi.org/10.1111/j.2042-7158.2003.tb02441.x10.1111/j.2042-7158.2003.tb02441.xSearch in Google Scholar

[48] Gutiérrez-Venegas, G., Maldonado-Frías, S., Ontiveros-Granados, A. and Kawasaki-Cárdenas, P. Role of p38 in nitric oxide synthase and cyclooxygenase expression and nitric oxide and PGE2 synthesis in human gingival fibroblasts stimulated with lipopolysaccharides. Life Sci. 77 (2005) 60–73. http://dx.doi.org/10.1016/j.lfs.2004.12.01510.1016/j.lfs.2004.12.015Search in Google Scholar

[49] Takahama, U., Yamamoto, A., Hirota, S. and Oniki, T. Quercetin-dependent reduction of salivary nitrite to nitric oxide under acidic conditions and interaction between quercetin and ascorbic acid during the reduction. J. Agric. Food Chem. 51 (2003) 6014–6020. http://dx.doi.org/10.1021/jf021253+10.1021/jf021253+Search in Google Scholar

[50] Huang, G.C., Chow, J.M., Shen, S.C., Yang, L.Y., Lin, C.W. and Chen, Y.C. Wogonin but not Nor-wogonin inhibits lipopolysaccharide and lipoteichoic acid-induced iNOS gene expression and NO production in macrophages. Int. Immunopharmacol. 7 (2007) 1054–1063. http://dx.doi.org/10.1016/j.intimp.2007.04.00110.1016/j.intimp.2007.04.001Search in Google Scholar

[51] Chapekar, M.S., Zaremba, T.G., Kuester, R.K. and Hitchins, V.M. Synergistic induction of tumor necrosis factor alpha by bacterial lipopolysaccharide and lipoteichoic acid in combination with polytetrafluoroethylene particles in a murine macrophage cell line RAW 264.7. J. Biomed. Mater. Res. 31 (1996) 251–256. http://dx.doi.org/10.1002/(SICI)1097-4636(199606)31:2<251::AID-JBM12>3.0.CO;2-O10.1002/(SICI)1097-4636(199606)31:2<251::AID-JBM12>3.0.CO;2-OSearch in Google Scholar

[52] Dahle, M.K., Øverland, G., Myhre, A.E., Stuestøl, J.F., Hartung, T., Krohn, C.D., Mathiesen, Ø., Wang, J.E. and Aasen, A.O. The phosphatidylinositol 3-kinase/protein kinase B signaling pathway is activated by lipoteichoic acid and plays a role in Kupffer cell production of interleukin-6 (IL-6) and IL-10. Infect. Immun. 72 (2004) 5704–5711. http://dx.doi.org/10.1128/IAI.72.10.5704-5711.200410.1128/IAI.72.10.5704-5711.2004Search in Google Scholar

[53] Bruserud, Ø., Wendelbo, Ø. and Paulsen, K. Lipoteichoic acid derived from Enterococcus faecalis modulates the functional characteristics of both normal peripheral blood leukocytes and native human acute myelogenous leukemia blasts. Eur. J. Haematol. 73 (2004) 340–350. http://dx.doi.org/10.1111/j.1600-0609.2004.00307.x10.1111/j.1600-0609.2004.00307.xSearch in Google Scholar

[54] Lonchampt, M.O., Auguet, M., Delaflotte, S., Goulin-Schulz, J., Chabrier, P.E. and Braquet, P. Lipoteichoic acid: a new inducer of nitric oxide synthase. J. Cardiovasc. Pharmacol. 1 (1992) 20 Suppl 12, S145–147. http://dx.doi.org/10.1097/00005344-199204002-0004110.1097/00005344-199204002-00041Search in Google Scholar PubMed

[55] Chang, Y.C., Li, P.C., Chen, B.C., Chang, M.S., Wang, J.L., Chiu, W.T. and Lin, C.H. Lipoteichoic acid-induced nitric oxide synthase expression in RAW 264.7 macrophages is mediated by cyclooxygenase-2, prostaglandin E2, protein kinase A, p38 MAPK and nuclear factor-kappaB pathways. Cell Signal. 18 (2006) 1235–1243. http://dx.doi.org/10.1016/j.cellsig.2005.10.00510.1016/j.cellsig.2005.10.005Search in Google Scholar PubMed

[56] Gutiérrez-Venegas, G. and Bando-Campos, C.G. The flavonoids luteolin and quercetagetin inhibit lipoteichoic acid actions on H9c2 cardiomyocytes. Int. Immunopharmacol. 10 (2010) 1003–1009. http://dx.doi.org/10.1016/j.intimp.2010.05.01210.1016/j.intimp.2010.05.012Search in Google Scholar PubMed

Published Online: 2014-3-26
Published in Print: 2014-3-1

© 2013 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 18.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-014-0186-4/html
Scroll to top button