Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter May 11, 2013

PTPN4 negatively regulates CrkI in human cell lines

  • Juan Zhou EMAIL logo , Bingbing Wan , Jingxuan Shan , Huili Shi , Yanhong Li and Keke Huo

Abstract

PTPN4 is a widely expressed non-receptor protein tyrosine phosphatase. Although its overexpression inhibits cell growth, the proteins with which it interacts to regulate cell growth are unknown. In this study, we identified CrkI as a PTPN4-interacting protein using a yeast two-hybrid, and confirmed this interaction using in vitro GST pull-down and co-immunoprecipitation and co-localization assays. We further determined the interactional regions as the SH3 domain of CrkI and the proline-rich region between amino acids 462 and 468 of PTPN4. Notably, overexpression of PTPN4 inhibits CrkI-mediated proliferation and wound healing of HEK293T cells, while knockdown of PTPN4 by siRNA in Hep3B cells enhances CrkI-mediated cell growth and motility. Moreover, our data show that ectopic expression of PTPN4 reduces the phosphorylation level of CrkI in HEK293T cells. These findings suggest that PTPN4 negatively regulates cell proliferation and motility through dephosphorylation of CrkI.

[1] Hubbard, S.R. and Till, J.H. Protein tyrosine kinase structure and function. Annu. Rev. Biochem. 69 (2000) 373–398. http://dx.doi.org/10.1146/annurev.biochem.69.1.37310.1146/annurev.biochem.69.1.373Search in Google Scholar

[2] Zhang, Z.Y. Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor development. Annu. Rev. Pharmacol. Toxicol. 42 (2002) 209–234. http://dx.doi.org/10.1146/annurev.pharmtox.42.083001.14461610.1146/annurev.pharmtox.42.083001.144616Search in Google Scholar

[3] Rudolph, J. Inhibiting transient protein-protein interactions: lessons from the Cdc25 protein tyrosine phosphatases. Nat. Rev. Cancer 7 (2007) 202–211. http://dx.doi.org/10.1038/nrc208710.1038/nrc2087Search in Google Scholar

[4] Vang, T., Miletic, A.V., Arimura, Y., Tautz, L., Rickert, R.C. and Mustelin, T. Protein tyrosine phosphatases in autoimmunity. Annu. Rev. Immunol. 26 (2008) 29–55. http://dx.doi.org/10.1146/annurev.immunol.26.021607.09041810.1146/annurev.immunol.26.021607.090418Search in Google Scholar

[5] Alonso, A., Sasin, J., Bottini, N., Friedberg, I., Osterman, A., Godzik, A., Hunter, T., Dixon, J. and Mustelin, T. Protein tyrosine phosphatases in the human genome. Cell 117 (2004) 699–711. http://dx.doi.org/10.1016/j.cell.2004.05.01810.1016/j.cell.2004.05.018Search in Google Scholar

[6] Gu, M.X., York, J.D., Warshawsky, I. and Majerus, P.W. Identification, cloning, and expression of a cytosolic megakaryocyte protein-tyrosinephosphatase with sequence homology to cytoskeletal protein 4.1. Proc. Natl. Acad. Sci. USA 88 (1991) 5867–5871. http://dx.doi.org/10.1073/pnas.88.13.586710.1073/pnas.88.13.5867Search in Google Scholar

[7] Gu, M. and Majerus, P.W. The properties of the protein tyrosine phosphatase PTPMEG. J. Biol. Chem. 271 (1996) 27751–27759. http://dx.doi.org/10.1074/jbc.271.4.182510.1074/jbc.271.4.1825Search in Google Scholar

[8] Gu, M., Meng, K. and Majerus, P.W. The effect of overexpression of the protein tyrosine phosphatase PTPMEG on cell growth and on colony formation in soft agar in COS-7 cells. Proc. Natl. Acad. Sci. USA 93 (1996) 12980–12985. http://dx.doi.org/10.1073/pnas.93.23.1298010.1073/pnas.93.23.12980Search in Google Scholar

[9] Prehaud, C., Wolff, N., Terrien, E., Lafage, M., Megret, F., Babault, N., Cordier, F., Tan, G.S., Maitrepierre, E., Menager, P., Chopy, D., Hoos, S., England, P., Delepierre, M., Schnell, M.J., Buc, H. and Lafon, M. Attenuation of rabies virulence: takeover by the cytoplasmic domain of its envelope protein. Sci. Signal. 3 (2010) ra5. http://dx.doi.org/10.1126/scisignal.200051010.1126/scisignal.2000510Search in Google Scholar

[10] Park, K.W., Lee, E.J., Lee, S., Lee, J.E., Choi, E., Kim, B.J., Hwang, R., Park, K.A. and Baik, J. Molecular cloning and characterization of a protein tyrosine phosphatase enriched in testis, a putative murine homologue of human PTPMEG. Gene 257 (2000) 45–55. http://dx.doi.org/10.1016/S0378-1119(00)00351-610.1016/S0378-1119(00)00351-6Search in Google Scholar

[11] Whited, J.L., Robichaux, M.B., Yang, J.C. and Garrity, P.A. PTPMEG is required for the proper establishment and maintenance of axon projections in the central brain of Drosophila. Development 134 (2007) 43–53. http://dx.doi.org/10.1242/dev.0271810.1242/dev.02718Search in Google Scholar PubMed

[12] Hironaka, K., Umemori, H., Tezuka, T., Mishina, M. and Yamamoto, T. The protein-tyrosine phosphatase PTPMEG interacts with glutamate receptor delta 2 and epsilon subunits. J. Biol. Chem. 275 (2000) 16167–16173. http://dx.doi.org/10.1074/jbc.M90930219910.1074/jbc.M909302199Search in Google Scholar PubMed

[13] Young, J.A., Becker, A.M., Medeiros, J.J., Shapiro, V.S., Wang, A., Farrar, J.D., Quill, T.A., Hooft van Huijsduijnen, R. and van Oers, N.S. The protein tyrosine phosphatase PTPN4/PTP-MEG1, an enzyme capable of dephosphorylating the TCR ITAMs and regulating NF-kappaB, is dispensable for T cell development and/or T cell effector functions. Mol. Immunol. 45 (2008) 3756–3766. http://dx.doi.org/10.1016/j.molimm.2008.05.02310.1016/j.molimm.2008.05.023Search in Google Scholar PubMed PubMed Central

[14] van der Geer, P., Hunter, T. and Lindberg, R.A. Receptor protein-tyrosine kinases and their signal transduction pathways. Annu. Rev. Cell Biol. 10 (1994) 251–337. http://dx.doi.org/10.1146/annurev.cb.10.110194.00134310.1146/annurev.cb.10.110194.001343Search in Google Scholar PubMed

[15] Watanabe, T., Tsuda, M., Makino, Y., Konstantinou, T., Nishihara, H., Majima, T., Minami, A., Feller, S.M. and Tanaka, S. Crk adaptor proteininduced phosphorylation of Gab1 on tyrosine 307 via Src is important for organization of focal adhesions and enhanced cell migration. Cell Res. 19 (2009) 638–650. http://dx.doi.org/10.1038/cr.2009.4010.1038/cr.2009.40Search in Google Scholar PubMed

[16] Rodrigues, S.P., Fathers, K.E., Chan, G., Zuo, D., Halwani, F., Meterissian, S. and Park, M. CrkI and CrkII function as key signaling integrators for migration and invasion of cancer cells. Mol. Cancer Res. 3 (2005) 183–194. Search in Google Scholar

[17] Sakai, R., Iwamatsu, A., Hirano, N., Ogawa, S., Tanaka, T., Mano, H., Yazaki, Y. and Hirai, H. A novel signaling molecule, p130, forms stable complexes in vivo with v-Crk and v-Src in a tyrosine phosphorylationdependent manner. EMBO J. 13 (1994) 3748–3756. Search in Google Scholar

[18] Matsuda, M., Hashimoto, Y., Muroya, K., Hasegawa, H., Kurata, T., Tanaka, S., Nakamura, S. and Hattori, S. CRK protein binds to two guanine nucleotide-releasing proteins for the Ras family and modulates nerve growth factor-induced activation of Ras in PC12 cells. Mol. Cell. Biol. 14 (1994) 5495–5500. Search in Google Scholar

[19] Beitner-Johnson, D. and LeRoith, D. Insulin-like growth factor-I stimulates tyrosine phosphorylation of endogenous c-Crk. J. Biol. Chem. 270 (1995) 5187–5190. http://dx.doi.org/10.1074/jbc.270.10.518710.1074/jbc.270.10.5187Search in Google Scholar PubMed

[20] Hashimoto, Y., Katayama, H., Kiyokawa, E., Ota, S., Kurata, T., Gotoh, N., Otsuka, N., Shibata, M. and Matsuda, M. Phosphorylation of CrkII adaptor protein at tyrosine 221 by epidermal growth factor receptor. J. Biol. Chem. 273 (1998) 17186–17191. http://dx.doi.org/10.1074/jbc.273.27.1718610.1074/jbc.273.27.17186Search in Google Scholar PubMed

[21] Antoku, S. and Mayer, B.J. Distinct roles for Crk adaptor isoforms in actin reorganization induced by extracellular signals. J. Cell Sci. 122 (2009) 4228–4238. http://dx.doi.org/10.1242/jcs.05462710.1242/jcs.054627Search in Google Scholar PubMed PubMed Central

[22] Akakura, S., Kar, B., Singh, S., Cho, L., Tibrewal, N., Sanokawa-Akakura, R., Reichman, C., Ravichandran, K.S. and Birge, R.B. C-terminal SH3 domain of CrkII regulates the assembly and function of the DOCK180/ELMO Rac-GEF. J. Cell Physiol. 204 (2005) 344–351. http://dx.doi.org/10.1002/jcp.2028810.1002/jcp.20288Search in Google Scholar PubMed

[23] Kiyokawa, E., Hashimoto, Y., Kobayashi, S., Sugimura, H., Kurata, T. and Matsuda, M. Activation of Rac1 by a Crk SH3-binding protein, DOCK180. Genes Dev. 12 (1998) 3331–3336. http://dx.doi.org/10.1101/gad.12.21.333110.1101/gad.12.21.3331Search in Google Scholar PubMed PubMed Central

[24] Bell, E.S. and Park, M. Models of crk adaptor proteins in cancer. Genes Cancer 3 (2012) 341–352. http://dx.doi.org/10.1177/194760191245995110.1177/1947601912459951Search in Google Scholar PubMed PubMed Central

[25] Park, T.J. and Curran, T. Crk and Crk-like play essential overlapping roles downstream of disabled-1 in the Reelin pathway. J. Neurosci. 28 (2008) 13551–13562. http://dx.doi.org/10.1523/JNEUROSCI.4323-08.200810.1523/JNEUROSCI.4323-08.2008Search in Google Scholar PubMed PubMed Central

[26] Matsuki, T., Pramatarova, A. and Howell, B.W. Reduction of Crk and CrkL expression blocks reelin-induced dendritogenesis. J. Cell Sci. 121 (2008) 1869–1875. http://dx.doi.org/10.1242/jcs.02733410.1242/jcs.027334Search in Google Scholar PubMed PubMed Central

[27] Feller, S.M. Crk family adaptors-signalling complex formation and biological roles. Oncogene 20 (2001) 6348–6371. http://dx.doi.org/10.1038/sj.onc.120477910.1038/sj.onc.1204779Search in Google Scholar PubMed

[28] Linghu, H., Tsuda, M., Makino, Y., Sakai, M., Watanabe, T., Ichihara, S., Sawa, H., Nagashima, K., Mochizuki, N. and Tanaka, S. Involvement of adaptor protein Crk in malignant feature of human ovarian cancer cell line MCAS. Oncogene 25 (2006) 3547–3556. http://dx.doi.org/10.1038/sj.onc.120939810.1038/sj.onc.1209398Search in Google Scholar PubMed

[29] Wang, H., Linghu, H., Wang, J., Che, Y.L., Xiang, T.X., Tang, W.X. and Yao, Z. W. The role of Crk/Dock180/Rac1 pathway in the malignant behavior of human ovarian cancer cell SKOV3. Tumour Biol. 31 (2010) 59–67. http://dx.doi.org/10.1007/s13277-009-0009-910.1007/s13277-009-0009-9Search in Google Scholar PubMed

[30] Takino, T., Nakada, M., Miyamori, H., Yamashita, J., Yamada, K.M. and Sato, H. CrkI adapter protein modulates cell migration and invasion in glioblastoma. Cancer Res. 63 (2003) 2335–2337. Search in Google Scholar

[31] Miller, C.T., Chen, G., Gharib, T.G., Wang, H., Thomas, D.G., Misek, D.E., Giordano, T.J., Yee, J., Orringer, M.B., Hanash, S.M. and Beer, D.G. Increased C-CRK proto-oncogene expression is associated with an aggressive phenotype in lung adenocarcinomas. Oncogene 22 (2003) 7950–7957. http://dx.doi.org/10.1038/sj.onc.120652910.1038/sj.onc.1206529Search in Google Scholar PubMed

[32] Wan, B., Wang, X.R., Zhou, Y.B., Zhang, X., Huo, K. and Han, Z.G. C12ORF39, a novel secreted protein with a typical amidation processing signal. Biosci. Rep. 30 (2010) 1–10. http://dx.doi.org/10.1042/BSR2008015610.1042/BSR20080156Search in Google Scholar PubMed

[33] Wan, B., Zhou, Y.B., Zhang, X., Zhu, H., Huo, K. and Han, Z.G. hOLFML1, a novel secreted glycoprotein, enhances the proliferation of human cancer cell lines in vitro. FEBS Lett. 582 (2008) 3185–3192. http://dx.doi.org/10.1016/j.febslet.2008.08.00910.1016/j.febslet.2008.08.009Search in Google Scholar PubMed

[34] Bauler, T.J., Hendriks, W.J. and King, P.D. The FERM and PDZ domaincontaining protein tyrosine phosphatases, PTPN4 and PTPN3, are both dispensable for T cell receptor signal transduction. PLoS ONE 3 (2008) e4014. http://dx.doi.org/10.1371/journal.pone.000401410.1371/journal.pone.0004014Search in Google Scholar PubMed PubMed Central

[35] Schumacher, C., Knudsen, B.S., Ohuchi, T., Di Fiore, P.P., Glassman, R.H. and Hanafusa, H. The SH3 domain of Crk binds specifically to a conserved proline-rich motif in Eps15 and Eps15R. J. Biol. Chem. 270 (1995) 15341–15347. http://dx.doi.org/10.1074/jbc.270.25.1534110.1074/jbc.270.25.15341Search in Google Scholar PubMed

[36] Feller, S.M., Knudsen, B. and Hanafusa, H. c-Abl kinase regulates the protein binding activity of c-Crk. EMBO J. 13 (1994) 2341–2351. Search in Google Scholar

[37] Matsuda, M., Tanaka, S., Nagata, S., Kojima, A., Kurata, T. and Shibuya, M. Two species of human CRK cDNA encode proteins with distinct biological activities. Mol. Cell. Biol. 12 (1992) 3482–3489. Search in Google Scholar

[38] Ren, R., Ye, Z.S. and Baltimore, D. Abl protein-tyrosine kinase selects the Crk adapter as a substrate using SH3-binding sites. Genes Dev. 8 (1994) 783–795. http://dx.doi.org/10.1101/gad.8.7.78310.1101/gad.8.7.783Search in Google Scholar PubMed

[39] Watanabe, T., Tsuda, M., Tanaka, S., Ohba, Y., Kawaguchi, H., Majima, T., Sawa, H. and Minami, A. Adaptor protein Crk induces Src-dependent activation of p38 MAPK in regulation of synovial sarcoma cell proliferation. Mol. Cancer Res. 7 (2009) 1582–1592. http://dx.doi.org/10.1158/1541-7786.MCR-09-006410.1158/1541-7786.MCR-09-0064Search in Google Scholar PubMed

Published Online: 2013-5-11
Published in Print: 2013-6-1

© 2013 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-013-0090-3/html
Scroll to top button