Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter December 21, 2009

Missense mutations in IHH impair Indian Hedgehog signaling in C3H10T1/2 cells: Implications for brachydactyly type A1, and new targets for Hedgehog signaling

  • Shengzhen Guo EMAIL logo , Jian Zhou , Bo Gao , Jianxin Hu , Hongsheng Wang , Junwei Meng , Xinzhi Zhao , Gang Ma , Chuwen Lin , Yue Xiao , Wei Tang , Xuming Zhu , Kathryn Cheah , Guoying Feng , Danny Chan and Lin He

Abstract

Heterozygous missense mutations in IHH result in Brachydactyly type A1 (BDA1; OMIM 112500), a condition characterized by the shortening of digits due to hypoplasia/aplasia of the middle phalanx. Indian Hedgehog signaling regulates the proliferation and differentiation of chondrocytes and is essential for endochondral bone formation. Analyses of activated IHH signaling in C3H10T1/2 cells showed that three BDA1-associated mutations (p.E95K, p.D100E and p.E131K) severely impaired the induction of targets such as Ptch1 and Gli1. However, this was not a complete loss of function, suggesting that these mutations may affect the interaction with the receptor PTCH1 or its partners, with an impact on the induction potency. From comparative microarray expression analyses and quantitative real-time PCR, we identified three additional targets, Sostdc1, Penk1 and Igfbp5, which were also severely affected. Penk1 and Igfbp5 were confirmed to be regulated by GLI1, while the induction of Sostdc1 by IHH is independent of GLI1. SOSTDC1 is a BMP antagonist, and altered BMP signaling is known to affect digit formation. The role of Penk1 and Igfbp5 in skeletogenesis is not known. However, we have shown that both Penk1 and Igfbp5 are expressed in the interzone region of the developing joint of mouse digits, providing another link for a role for IHH signaling in the formation of the distal digits.

[1] Nusslein-Volhard, C. and Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287 (1980) 795–801. http://dx.doi.org/10.1038/287795a010.1038/287795a0Search in Google Scholar

[2] Levin, M., Johnson, R.L., Stern, C.D., Kuehn, M. and Tabin, C. A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 82 (1995) 803–814. http://dx.doi.org/10.1016/0092-8674(95)90477-810.1016/0092-8674(95)90477-8Search in Google Scholar

[3] Riddle, R.D., Johnson, R.L., Laufer, E. and Tabin, C. Sonic Hedgehog mediates the polarizing activity of the ZPA. Cell 75 (1993) 1401–1416. http://dx.doi.org/10.1016/0092-8674(93)90626-210.1016/0092-8674(93)90626-2Search in Google Scholar

[4] Echelard, Y., Epstein, D.J., St-Jacques, B., Shen, L., Mohler, J., McMahon, J.A. and McMahon, A.P. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75 (1993) 1417–1430. http://dx.doi.org/10.1016/0092-8674(93)90627-310.1016/0092-8674(93)90627-3Search in Google Scholar

[5] Bitgood, M.J., Shen, L. and McMahon, A.P. Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr. Biol. 6 (1996) 298–304. http://dx.doi.org/10.1016/S0960-9822(02)00480-310.1016/S0960-9822(02)00480-3Search in Google Scholar

[6] Vortkamp, A., Lee, K., Lanske, B., Segre, G.V., Kronenberg, H.M. and Tabin, C.J. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273 (1996) 613–622. http://dx.doi.org/10.1126/science.273.5275.61310.1126/science.273.5275.613Search in Google Scholar

[7] Chen, Y. and Struhl, G. Dual roles for patched in sequestering and transducing Hedgehog. Cell (1996) 87 553–563. http://dx.doi.org/10.1016/S0092-8674(00)81374-410.1016/S0092-8674(00)81374-4Search in Google Scholar

[8] Marigo, V., Johnson, R.L., Vortkamp, A. and Tabin, C.J. Sonic hedgehog differentially regulates expression of GLI and GLI3 during limb development. Dev. Biol. 180 (1996) 273–283. http://dx.doi.org/10.1006/dbio.1996.030010.1006/dbio.1996.0300Search in Google Scholar

[9] Lee, J., Platt, K.A., Censullo, P. and Ruiz i Altaba, A. Gli1 is a target of Sonic hedgehog that induces ventral neural tube development. Development 124 (1997) 2537–2552. Search in Google Scholar

[10] Pathi, S., Rutenberg, J.B., Johnson, R.L. and Vortkamp, A. Interaction of Ihh and BMP/Noggin signaling during cartilage differentiation. Dev. Biol. 209 (1999) 239–253. http://dx.doi.org/10.1006/dbio.1998.918110.1006/dbio.1998.9181Search in Google Scholar

[11] Laufer, E., Nelson, C.E., Johnson, R.L., Morgan, B.A. and Tabin, C. Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 79 (1994) 993–1003. http://dx.doi.org/10.1016/0092-8674(94)90030-210.1016/0092-8674(94)90030-2Search in Google Scholar

[12] Lanske, B., Karaplis, A.C., Lee, K., Luz, A., Vortkamp, A., Pirro, A., Karperien, M., Defize, L.H., Ho, C., Mulligan, R.C., Abou-Samra, A.B., Juppner, H., Segre, G.V. and Kronenberg, H.M. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 273 (1996) 663–666. http://dx.doi.org/10.1126/science.273.5275.66310.1126/science.273.5275.663Search in Google Scholar PubMed

[13] Bitgood, M.J. and McMahon, A.P. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev. Biol. 172 (1995) 126–138. http://dx.doi.org/10.1006/dbio.1995.001010.1006/dbio.1995.0010Search in Google Scholar PubMed

[14] St-Jacques, B., Hammerschmidt, M. and McMahon, A.P. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 13 (1999) 2072–2086. http://dx.doi.org/10.1101/gad.13.16.207210.1101/gad.13.16.2072Search in Google Scholar PubMed PubMed Central

[15] Gao, B. and He, L. Answering a century old riddle: brachydactyly type A1. Cell. Res. 14 (2004) 179–187. http://dx.doi.org/10.1038/sj.cr.729021810.1038/sj.cr.7290218Search in Google Scholar PubMed

[16] Byrnes, A.M., Racacho, L., Grimsey, A., Hudgins, L., Kwan, A.C., Sangalli, M., Kidd, A., Yaron, Y. and Lau, Y.L. Brachydactyly A-1 mutations restricted to the central region of the N-terminal active fragment of Indian Hedgehog. Eur. J. Hum. Genet. 17 (2009) 1112–1120. http://dx.doi.org/10.1038/ejhg.2009.1810.1038/ejhg.2009.18Search in Google Scholar PubMed PubMed Central

[17] Gao, B., Guo, J., She, C., Shu, A., Yang, M., Tan, Z., Yang, X., Guo, S., Feng, G. and He, L. Mutations in IHH, encoding Indian hedgehog, cause brachydactyly type A-1. Nat. Genet. 28 (2001) 386–388. http://dx.doi.org/10.1038/ng57710.1038/ng577Search in Google Scholar PubMed

[18] McLellan, J.S., Zheng, X., Hauk, G., Ghirlando, R., Beachy, P.A. and Leachy, D.J. The mode of Hedgehog binding to Ihog homologues is not conserved across different phyla. Nature 455 (2008) 979–983. http://dx.doi.org/10.1038/nature0735810.1038/nature07358Search in Google Scholar PubMed PubMed Central

[19] Gao, B., Hu, J., Stricker, S., Cheung, M., Ma, G., Law, K.F., Witte, F., Briscoe, J., Mundlos, S., He, L., Cheah, K.S. and Chan, D. A mutation in Ihh that causes digit abnormalities alters its signaling capacity and range. Nature 458 (2009) 1196–2000. http://dx.doi.org/10.1038/nature0786210.1038/nature07862Search in Google Scholar PubMed

[20] Hall, T.M., Porter, J.A., Beachy, P.A. and Leahy, D.J. A potential catalytic site revealed by the 1.7-A crystal structure of the amino-terminal signalling domain of Sonic hedgehog. Nature 378 (1995) 212–216. http://dx.doi.org/10.1038/378212a010.1038/378212a0Search in Google Scholar PubMed

[21] Guo, S., Shi, Y., Zhao, X., Duan, S., Zhou, J., Meng, J., Yang, Y., Gu, N., Feng, G., Liu, H., Zhu, S. and He, L. No genetic association between polymorphisms in the AMPA receptor subunit GluR4 gene (GRIA4) and schizophrenia in the Chinese population. Neurosci. Lett. 369 (2004) 168–172. http://dx.doi.org/10.1016/j.neulet.2004.07.07910.1016/j.neulet.2004.07.079Search in Google Scholar PubMed

[22] Aoyama, S., Kase, H. and Borrelli, E. Rescue of locomotor impairment in dopamine D2 receptor-deficient mice by an adenosine A2A receptor antagonist. J. Neurosci. 20 (2000) 5848–5852. Search in Google Scholar

[23] Spinella-Jaegle, S., Rawadi, G., Kawai, S., Gallea, S., Faucheu, C., Mollat, P., Courtois, B., Bergaud, B., Ramez, V., Blanchet, A.M., Adelmant, G., Baron, R. and Roman-Roman, S. Sonic hedgehog increases the commitment of pluripotent mesenchymal cells into the osteoblastic lineage and abolishes adipocytic differentiation. J. Cell. Sci. 114 (2001) 2085–2094. Search in Google Scholar

[24] Nakamura, T., Aikawa, T., Iwamoto-Enomoto, M., Iwamoto, M., Higuchi, Y., Pacifici, M., Kinto, N., Yamaguchi, A., Noji, S., Kurisu, K. and Matsuya, T. Induction of osteogenic differentiation by hedgehog proteins. Biochem. Biophys. Res. Commun. 237 (1997) 465–469. http://dx.doi.org/10.1006/bbrc.1997.715610.1006/bbrc.1997.7156Search in Google Scholar

[25] Pathi, S., Pagan-Westphal, S., Baker, D.P., Garber, E.A., Rayhorn, P., Bumcrot, D., Tabin, C.J., Blake Pepinsky, R. and Williams, K.P. Comparative biological responses to human Sonic, Indian, and Desert hedgehog. Mech. Dev. 106 (2001) 107–117. http://dx.doi.org/10.1016/S0925-4773(01)00427-010.1016/S0925-4773(01)00427-0Search in Google Scholar

[26] Chen, M.H., Li, Y.J., Kawakami, T., Xu, S.M. and Chuang, P.T. Palmitoylation is required for the production of a soluble multimeric Hedgehog protein complex and long-range signaling in vertebrates. Genes Dev. 18 (2004) 641–659. http://dx.doi.org/10.1101/gad.118580410.1101/gad.1185804Search in Google Scholar

[27] Laurikkala, J., Kassai, Y., Pakkasjarvi, L., Thesleff, I. and Itoh, N. Identification of a secreted BMP antagonist, ectodin, integrating BMP, FGF, and SHH signals from the tooth enamel knot. Dev. Biol. 264 (2003) 91–105. http://dx.doi.org/10.1016/j.ydbio.2003.08.01110.1016/j.ydbio.2003.08.011Search in Google Scholar

[28] Walterhouse, D.O., Yoon, J.W. and Iannaccone, P.M. Developmental pathways: sonic hedgehog-patched-GLI. Environ. Health Perspect. 107 (1999) 167–171. http://dx.doi.org/10.2307/343450410.2307/3434504Search in Google Scholar

[29] Yoon, J.W., Kita, Y., Frank, D.J., Majewski, R.R., Konicek, B.A., Nobrega, M.A., Jacob, H., Walterhouse, D. and Iannaccone, P. Gene expression profiling leads to identification of GLI1-binding elements in target genes and a role for multiple downstream pathways in GLI1-induced cell transformation. J. Biol. Chem. 277 (2002) 5548–5555. http://dx.doi.org/10.1074/jbc.M10570820010.1074/jbc.M105708200Search in Google Scholar

[30] Agren, M., Kogerman, P., Kleman, M.I., Wessling, M. and Toftgard, R. Expression of the PTCH1 tumor suppressor gene is regulated by alternative promoters and a single functional Gli-binding site. Gene 330 (2004) 101–114. http://dx.doi.org/10.1016/j.gene.2004.01.01010.1016/j.gene.2004.01.010Search in Google Scholar

[31] Farabee, W.C. hereditary and sexual influence in meristic variation: a study of digital malformations in man. Thesis, Harvard University, 1903. Search in Google Scholar

[32] Hellemans, J., Coucke, P.J., Giedion, A., De Paepe, A., Kramer, P., Beemer, F. and Mortier, G.R. Homozygous mutations in IHH cause acrocapito-femoral dysplasia, an autosomal recessive disorder with cone-shaped epiphyses in hands and hips. Am. J. Hum. Genet. 72 (2003) 1040–1046. http://dx.doi.org/10.1086/37431810.1086/374318Search in Google Scholar

[33] Lee, J.J., Ekker, S.C., von Kessler, D., Porter, J.A., Sun, B.I. and Beachy, P.A. Autoproteolysis in hedgehog protein biogenesis. Science 266 (1994) 1528–1537. http://dx.doi.org/10.1126/science.798502310.1126/science.7985023Search in Google Scholar

[34] Porter, J.A., Ekker, S.C., Park, W.J., von Kessler, D.P., Young, K.E., Chen, C.H., Ma, Y., Woods, A.S., Cotter, R.J., Koonin, E.V. and Beachy, P.A. Hedgehog patterning activity: role of a lipophilic modification mediated by the carboxy-terminal autoprocessing domain. Cell 86 (1996) 21–34. http://dx.doi.org/10.1016/S0092-8674(00)80074-410.1016/S0092-8674(00)80074-4Search in Google Scholar

[35] Casali, A. and Struhl, G. Reading the Hedgehog morphogen gradient by measuring the ratio of bound to unbound Patched protein. Nature 431 (2004) 76–80. http://dx.doi.org/10.1038/nature0283510.1038/nature02835Search in Google Scholar PubMed

[36] Fuse, N., Maiti, T., Wang, B., Porter, J.A., Hall, T.M., Leahy, D.J. and Beachy, P.A. Sonic hedgehog protein signals not as a hydrolytic enzyme but as an apparent ligand for patched. Proc. Natl. Acad. Sci. U. S. A. 96 (1999) 10992–10999. http://dx.doi.org/10.1073/pnas.96.20.1099210.1073/pnas.96.20.10992Search in Google Scholar PubMed PubMed Central

[37] Ekker, S.C., McGrew, L.L., Lai, C.J., Lee, J.J., von Kessler, D.P., Moon, R.T. and Beachy, P.A. Distinct expression and shared activities of members of the hedgehog gene family of Xenopus laevis. Development 121 (1995) 2337–2347. Search in Google Scholar

[38] Yao, S., Lum, L. and Beachy, P. The ihog cell-surface proteins bind Hedgehog and mediate pathway activation. Cell 125 (2006) 343–357. http://dx.doi.org/10.1016/j.cell.2006.02.04010.1016/j.cell.2006.02.040Search in Google Scholar PubMed

[39] Tenzen, T., Allen, B.L., Cole, F., Kang, J.S., Krauss, R.S. and McMahon, A.P. The cell surface membrane proteins Cdo and Boc are components and targets of the Hedgehog signaling pathway and feedback network in mice. Dev. Cell. 10 (2006) 647–656. http://dx.doi.org/10.1016/j.devcel.2006.04.00410.1016/j.devcel.2006.04.004Search in Google Scholar PubMed

[40] Zhang, W., Kang, J.S., Cole, F., Yi, M J. and Krauss, R.S. Cdo functions at multiple points in the Sonic Hedgehog pathway, and Cdo-deficient mice accurately model human holoprosencephaly. Dev. Cell. 10 (2006) 657–665. http://dx.doi.org/10.1016/j.devcel.2006.04.00510.1016/j.devcel.2006.04.005Search in Google Scholar PubMed

[41] Lin, X. Functions of heparan sulfate proteoglycans in cell signaling during development. Development 131 (2004) 6009–6021. http://dx.doi.org/10.1242/dev.0152210.1242/dev.01522Search in Google Scholar PubMed

[42] Kang, J.S., Mulieri, P.J., Miller, C., Sassoon, D.A. and Krauss, R.S. CDO, a robo-related cell surface protein that mediates myogenic differentiation. J. Cell. Biol. 143 (1998) 403–413. http://dx.doi.org/10.1083/jcb.143.2.40310.1083/jcb.143.2.403Search in Google Scholar PubMed PubMed Central

[43] Dahn, R.D. and Fallon, J.F. Interdigital regulation of digit identity and homeotic transformation by modulated BMP signaling. Science 289 (2000) 438–441. http://dx.doi.org/10.1126/science.289.5478.43810.1126/science.289.5478.438Search in Google Scholar PubMed

[44] Minina, E., Wenzel, H.M., Kreschel, C., Karp, S., Gaffield, W., McMahon, A.P. and Vortkamp, A. BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development 128 (2001) 4523–4534. Search in Google Scholar

[45] Wu, Q., Zhang, Y. and Chen, Q. Indian Hedgeog is an essential component of mechanotransduction complex to stimulate chondrocyte proliferation. J. Biol. Cem. 276 (2001) 35290–35296. http://dx.doi.org/10.1074/jbc.M10105520010.1074/jbc.M101055200Search in Google Scholar PubMed

[46] Lehmann, K., Seemann, P., Stricker, S., Sammar, M., Meyer, B., Suring, K., Majewski, F., Tinscert, S., Grzeshcik, K., Muller, D., Knaus, P., Nurnberg, P. and Mundlos, S. Mutations in bone morphogenetic protein receptor 1B cause brachydactyly type A2. Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 12277–12282. http://dx.doi.org/10.1073/pnas.213347610010.1073/pnas.2133476100Search in Google Scholar PubMed PubMed Central

[47] Polinkovsky, A., Robin, N., Thomas, J.T., Irons, M., Lynn, A., Goodman, F.R., Reardon, W., Kant, S.G., Brunner, G., van der Burgt, I., Chitayat, D., McGaugran, J., Donnai, D., Luyten, F.P. and Warman, M.L. Mutations in CDMP1cause autosomal dominant brachydactyly type C. Nat. Genet. 17 (1997) 18–19. http://dx.doi.org/10.1038/ng0997-1810.1038/ng0997-18Search in Google Scholar

[48] Seemann, P., Schwappacher, R., Kjaer, KW., Krakow, D., Lehmann, K., Dawson, K., Stricker, S., Pohl, J., Ploger, F., Staub, E., Nickel, J., Sebald, W., Knaus, P. and Mundlos, S. Activating and deactivating mutations in the receptor interaction site of GDF5 cause symphalangism or brachydactyly type A2. J. Clin. Invest. 115 (2005) 2373–2381. http://dx.doi.org/10.1172/JCI2511810.1172/JCI25118Search in Google Scholar

[49] Olney, R.C. and Mougey, E.B. Expression of the components of the insulin-like growth factor axis across the growth-plate. Mol. Cell. Endocrinol. 156 (1999) 63–71. http://dx.doi.org/10.1016/S0303-7207(99)00144-610.1016/S0303-7207(99)00144-6Search in Google Scholar

[50] Salih, D.A., Tripathi, G., Holding, C., Szestak, T.A., Gonzalez, M.I., Carter, E.J., Cobb, L.J., Eisemann, J.E. and Pell, J.M. Insulin-like growth factor-binding protein 5 (Igfbp5) compromises survival, growth, muscle development, and fertility in mice. Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 4314–4319. http://dx.doi.org/10.1073/pnas.040023010110.1073/pnas.0400230101Search in Google Scholar PubMed PubMed Central

[51] Sekiya, I., Vuoristo, J.T., Larson, B.L. and Prockop, D.J. In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chon-drogenesis. Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 4397–4402. http://dx.doi.org/10.1073/pnas.05271619910.1073/pnas.052716199Search in Google Scholar PubMed PubMed Central

[52] Allan, G.J., Zannoni, A., McKinnell, I., Otto, W.R., Holzenberger, M., Flint, D.J. and Patel, K. Major components of the insulin-like growth factor axis are expressed early in chicken embryogenesis, with IGF binding protein (IGFBP)-5 expression subject to regulation by Sonic hedgehog. Anat. Embryol. (Berl) 207 (2003) 73–84. http://dx.doi.org/10.1007/s00429-003-0321-x10.1007/s00429-003-0321-xSearch in Google Scholar PubMed

[53] Allan, G.J., Flint, D.J., Darling, S.M., Geh, J. and Patel, K. Altered expression of insulin-like growth factor-1 and insulin like growth factor binding proteins-2 and 5 in the mouse mutant Hypodactyly (Hd) correlates with sites of apoptotic activity. Anat. Embryol. (Berl) 202 (2000) 1–11. http://dx.doi.org/10.1007/PL0000823910.1007/PL00008239Search in Google Scholar PubMed

[54] Konig, M., Zimmer, A.M., Steiner, H., Holmes, P.V., Crawley, J.N., Brownstein, M.J. and Zimmer, A. Pain responses, anxiety and aggression in mice deficient in pre-proenkephalin. Nature 383 (1996) 535–538. http://dx.doi.org/10.1038/383535a010.1038/383535a0Search in Google Scholar PubMed

[55] Brunet, L.J., McMaon, J.A., McMaon, A.P. and Harland, R.M. Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 280 (1998) 1455–1457. http://dx.doi.org/10.1126/science.280.5368.145510.1126/science.280.5368.1455Search in Google Scholar PubMed

Published Online: 2009-12-21
Published in Print: 2010-3-1

© 2009 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-009-0040-2/html
Scroll to top button