Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter February 13, 2007

Post-transcriptional modifications of VEGF-A mRNA in non-ischemic dilated cardiomyopathy

  • Jacek Kowalczyk EMAIL logo , Dorota Domal-Kwiatkowska , Urszula Mazurek , Michał Zembala , Bogdan Michalski and Marian Zembala

Abstract

Vascular endothelial growth factor (VEGF-A) is one of the most important proangiogenic factors. It has many isoforms encoded by one gene. The occurrence of these isoforms is associated with the process of alternative splicing of mRNA. Some of the splice forms are perceived as tissue specific. The aim of this study was to determine the alternative splicing of VEGF-A mRNA in dilated cardiomyopathy, especially at the level of particular myocardial layers. The assessment of post-transcriptional modifications of VEGF-A mRNA was made on specimens taken from the explanted hearts of patients undergoing cardiac transplantation. Molecular and histopathological studies were perfomed on particular layers of the myocardial muscle (endocardium, myocardium, epicardium). A molecular analysis of cardiac samples was performed by quantitative analysis of the mRNA of the studied VEGF-A isoforms (VEGF121, -145, -165, -183, -189, and -206) using QRTPCR with an ABI-PRISM 7700-TaqMan sequence detector. 72 cardiac specimens taken from the explanted hearts were analyzed. Each of the studied VEGF-A splice forms was present in the evaluated hearts, but the types of alternative splicing of mRNA were different in particular layers. Quantitative analysis revealed different amounts of the studied isoforms. Generally, significantly increased expression of the VEGF-A isoforms was observed in samples taken from hearts with post-inflammatory etiology of cardiomyopathy. Our conclusions are: 1. All the studied VEGF-A isoforms were found in the human hearts, including those thusfar considered characteristic for other tissues. 2. Significant differences were observed in the expression of the VEGF-A splice forms with respect to the myocardial layers and the location of the cardiac biopsy. 3. Repetitive and comparable results for samples with post-inflammatory etiology were obtained, and they revealed considerably higher amounts of VEGF-A isoforms compared to specimens with idiopathic etiology.

[1] Ferrara, N. and Davis-Smyth, T. The biology of vascular endothelial growth factor. Endocr. Rev. 18 (1997) 4–25. http://dx.doi.org/10.1210/er.18.1.410.1210/er.18.1.4Search in Google Scholar

[2] Poltorak, Z., Cohen, T. and Neufeld, G. The VEGF splice variants: properties, receptors, and usage for the treatment of ischemic diseases. Herz 25 (2000) 126–129. http://dx.doi.org/10.1007/PL0000195010.1007/PL00001950Search in Google Scholar

[3] Kroll, J. and Waltenberger, J. Regulation of the endothelial function and angiogenesis by vascular endothelial growth factor-A (VEGF-A). Z. Kardiol. 89 (2000) 206–218. http://dx.doi.org/10.1007/s00392005047210.1007/s003920050472Search in Google Scholar

[4] Kowalczyk, J. and Pasyk, S. Vascular endothelial growth factor and its application in therapy of cardiovascular diseases. Pol. Merkur. Lekarski 13 (2002) 74–78. Search in Google Scholar

[5] Breslin, J.W., Pappas, P.J., Cerveira, J.J., Hobson, R.W. and Duran, W.N. VEGF increases endothelial permeability by separate signaling pathways involving ERK-1/2 and nitric oxide. Am. J. Physiol. Heart Circ. Physiol. 284 (2003) H92–H100. 10.1152/ajpheart.00330.2002Search in Google Scholar

[6] Whittle, C., Gillespie, K., Harrison, R., Mathieson, P.W. and Harper, S.J. Heterogeneous vascular endothelial growth factor (VEGF) isoform mRNA and receptor mRNA expression in human glomeruli, and the identification of VEGF148 mRNA, a novel truncated splice variant. Clin. Sci. 97 (1999) 303–312. http://dx.doi.org/10.1042/CS1999001610.1042/CS19990016Search in Google Scholar

[7] Vincenti, V., Cassano, C., Rocchi, M. and Persico, G. Assignment of the vascular endothelial growth factor gene to the human chromosome 6p21.3. Circulation 93 (1996) 1493–1495. Search in Google Scholar

[8] Gitay-Goren, H., Cohen, T., Tessler, S., Soker, S., Gengrinovitch, S., Rockwell, P., Klagsbrun, M., Levi, B.Z. and Neufeld, G. Selective binding of VEGF121 to one of the three vascular endothelial growth factor receptors of vascular endothelial cells. J. Biol. Chem. 271 (1996) 5519–5523. http://dx.doi.org/10.1074/jbc.271.10.551910.1074/jbc.271.10.5519Search in Google Scholar

[9] Michalski, B., Mazurek, U., Olejek, A., Graniczka, M., Loch, T., Poreba, R. and Wilczok, T. Quantitative RT-PCR assay for mRNA of VEGF and histone H4 in the determination of proliferative and angiogenic activity in vulvar pathology. Folia Histochem. Cytobiol. 39 Suppl 2 (2001) 108–109. Search in Google Scholar

[10] Michalski, B., Mazurek, U., Olejek, A., Kusmierz, D., Poreba, R., Witek, A. and Wilczok, T. Expression of VEGF, KDR, p53, E6 HPV16 and HPV18 in vulvar and cervix cancer. Wiad. Lek. 53 (2000) 240–246. Search in Google Scholar

[11] Bennett, K.R., Gu, J.W., Adair, T.H. and Heath, B.J. Elevated plasma concentration of vascular endothelial growth factor in cardiac myxoma. J. Thorac. Cardiovasc. Surg. 122 (2001) 193–194. http://dx.doi.org/10.1067/mtc.2001.11374410.1067/mtc.2001.113744Search in Google Scholar

[12] Broeders, M.A.W., Doevendans, P.A., Maessen, J.G., van Gorsel, E., Egbrink, M.G., Daemen, M.J., Tangelder, G.J., Reneman, R.S. and van der Zee, R. The human internal thoracic artery releases more nitric oxide in response to vascular endothelial growth factor than the human saphenous vein. J. Thorac. Cardiovasc. Surg. 122 (2001) 305–309. http://dx.doi.org/10.1067/mtc.2001.11360210.1067/mtc.2001.113602Search in Google Scholar

[13] Hojo, Y., Ikeda, U., Zhu, Y., Okada, M., Ueno, S., Arakawa, H., Fujikawa, H., Katsuki, T. and Shimada, K. Expression of vascular endothelial growth factor in patients with acute myocardial infarction. J. Am. Coll. Cardiol. 35 (2000) 968–973. http://dx.doi.org/10.1016/S0735-1097(99)00632-410.1016/S0735-1097(99)00632-4Search in Google Scholar

[14] Lee, S.H., Wolf, P.L., Escudero, R., Deutsch, R., Jamieson, S.W. and Thistlethwaite, P.A. Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N. Engl. J. Med. 342 (2000) 626–633. http://dx.doi.org/10.1056/NEJM20000302342090410.1056/NEJM200003023420904Search in Google Scholar PubMed

[15] Miraliakbari, R., Francalancia, N.A., Lust, R.M., Gerardo, J.A., Ng, P.C., Sun, Y.S. and Chitwood, W.R. Jr. Differences in myocardial and peripheral VEGF and KDR levels after acute ischemia. Ann. Thorac. Surg. 69 (2000) 1750–1753. http://dx.doi.org/10.1016/S0003-4975(00)01375-810.1016/S0003-4975(00)01375-8Search in Google Scholar

[16] Soeki, T., Tamura, Y., Shinohara, H., Tanaka, H., Bando, K. and Fukuda, N. Serial changes in serum VEGF and HGF in patients with acute myocardial infarction. Cardiology 93 (2000) 168–174. http://dx.doi.org/10.1159/00000702210.1159/000007022Search in Google Scholar

[17] Kranz, A., Rau, C., Kochs, M. and Waltenberger, J. Elevation of vascular endothelial growth factor-A serum levels following acute myocardial infarction. Evidence for its origin and functional significance. J. Mol. Cell. Cardiol. 32 (2000) 65–72. http://dx.doi.org/10.1006/jmcc.1999.106210.1006/jmcc.1999.1062Search in Google Scholar

[18] Seko, Y., Fukuda, S. and Nagai, R. Serum levels of endostatin, vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) in patients with acute myocardial infarction undergoing early reperfusion therapy. Clin. Sci. 106 (2004) 439–442. http://dx.doi.org/10.1042/CS2003036510.1042/CS20030365Search in Google Scholar

[19] Minchenko, A., Bauer, T., Salceda, S. and Caro, J. Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Lab. Invest. 71 (1994) 374–379. Search in Google Scholar

[20] Okuda, Y., Tsurumaru, K., Suzuki, S., Miyauchi, T., Asano, M., Hong, Y., Sone, H., Fujita, R., Mizutani, M., Kawakami, Y., Nakajima, T., Soma, M., Matsuo, K., Suzuki, H. and Yamashita, K. Hypoxia and endothelin-1 induce VEGF production in human vascular smooth muscle cells. Life Sci. 63 (1998) 477–484. http://dx.doi.org/10.1016/S0024-3205(98)00296-310.1016/S0024-3205(98)00296-3Search in Google Scholar

[21] Tuder, R.M., Flook, B.E. and Voelkel, N.F. Increased gene expression for VEGF and the VEGF receptors KDR/flk and flt in lungs exposed to acute or chronic hypoxia. J. Clin. Invest. 95 (1995) 1798–1807. http://dx.doi.org/10.1172/JCI11785810.1172/JCI117858Search in Google Scholar PubMed PubMed Central

[22] Tham, E., Wang, J., Piehl, F. and Weber, G. Upregulation of VEGF-A without angiogenesis in a mouse model of dilated cardiomyopathy caused by mitochondrial dysfunction. J. Histochem. Cytochem. 50 (2002) 935–944. Search in Google Scholar

[23] Abraham, D., Hofbauer, R., Schafer, R., Blumer, R., Paulus, P., Miksovsky, A., Traxler, H., Kocher, A. and Aharinejad, S. Selective downregulation of VEGF-A165, VEGF-R1, and decreased capillary density in patients with dilative but not ischemic cardiomyopathy. Circ. Res. 87 (2000) 644–647. Search in Google Scholar

[24] Kim, C.H., Cho, Y.S., Chun, Y.S., Park, J.W. and Kim, M.S. Early expression of myocardial HIF-1 alpha in response to mechanical stresses: regulation by stretch-activated channels and the phosphatidylinositol 3-kinase signaling pathway. Circ Res. 90 (2002) E25–E33. http://dx.doi.org/10.1161/hh0202.10492310.1161/hh0202.104923Search in Google Scholar PubMed

[25] Senger, D.R., Ledbetter, S.R., Claffey, K.P., Papadopoulos-Sergiou, A., Peruzzi, C.A. and Detmar, M. Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the avb3 integrin, osteopontin, and thrombin. Am. J. Pathol. 149 (1996) 293–305. Search in Google Scholar

[26] Xu, F. and Severinghaus, J.W. Rat brain VEGF expression in alveolar hypoxia: possible role in high-altitude cerebral edema. J. Appl. Physiol. 85 (1998) 53–57. Search in Google Scholar

[27] Waltenberger, J., Kranz, A. and Beyer, M. Neovascularization in the human heart is associated with expression of VEGF-A and its receptors Flt-1 (VEGFR-1) and KDR (VEGFR-2). Results from cardiomyopexy in ischemic cardiomyopathy. Angiogenesis 3 (1999) 345–351. http://dx.doi.org/10.1023/A:102658590039810.1023/A:1026585900398Search in Google Scholar

[28] Michalski, B., Mazurek, U., Olejek, A., Loch, T., Graniczka, M., Poreba, R. and Wilczok, T. Expression patterns in isoforms of vascular endothelial growth-factors in tissue samples of vulval cancer T1N2M0 stage. Ginekol. Pol. 74 (2003) 40–47. Search in Google Scholar

[29] Baumgartner, I., Pieczek, A., Manor, O., Blair, R., Kearney, M., Walsh, K. and Isner, J.M. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation 97 (1998) 1114–1123. Search in Google Scholar

[30] Freedman, S.B., Vale, P., Kalka, C., Kearney, M., Pieczek, A., Symes, J., Losordo, D. and Isner, J.M. Plasma vascular endothelial growth factor (VEGF) levels after intramuscular and intramyocardial gene transfer of VEGF-1 plasmid DNA. Hum. Gene Ther. 13 (2002) 1595–1603. http://dx.doi.org/10.1089/1043034026020168010.1089/10430340260201680Search in Google Scholar PubMed

[31] Hendel, R.C., Henry, T.D., Rocha-Singh, K., Isner, J.M., Kereiakes, D.J., Giordano, F.J., Simons, M. and Bonow, R.O. Effect of intracoronary recombinant human vascular endothelial growth factor on myocardial perfusion: evidence for a dose-dependent effect. Circulation 101 (2000) 118–121. Search in Google Scholar

[32] Laitinen, M., Hartikainen, J., Hiltunen, M.O., Eranen, J., Kiviniemi, M., Narvanen, O., Makinen, K., Manninen, H., Syvanne, M., Martin, J.F., Laakso, M. and Yla-Herttuala, S. Catheter-mediated vascular endothelial growth factor gene transfer to human coronary arteries after angioplasty. Hum. Gene Ther. 11 (2000) 263–270. http://dx.doi.org/10.1089/1043034005001600310.1089/10430340050016003Search in Google Scholar PubMed

[33] Leotta, E., Patejunas, G., Murphy, G., Szokol, J., McGregor, L., Carbray, J., Hamawy, A., Winchester, D., Hackett, N., Crystal, R. and Rosengart, T. Gene therapy with adenovirus-mediated myocardial transfer of vascular endothelial growth factor 121 improves cardiac performance in a pacing model of congestive heart failure. J. Thorac. Cardiovasc. Surg. 123 (2002) 1101–1113. http://dx.doi.org/10.1067/mtc.2002.12104410.1067/mtc.2002.121044Search in Google Scholar

[34] Rajagopalan, S., Shah, M., Luciano, A., Crystal, R. and Nabel, E.G. Adenovirus-mediated gene transfer of VEGF121 improves lower-extremity endothelial function and flow reserve. Circulation 104 (2001) 753–755. Search in Google Scholar

[35] Rosengart, T.K., Lee, L.Y., Patel, S.R., Sanborn, T.A., Parikh, M., Bergman, G.W., Hachamovitch, R., Szulc, M., Kligfield, P.D., Okin, P.M., Hahn, R.T., Devereux, R.B., Post, M.R., Hackett, N.R., Foster, T., Grasso, T.M., Lesser, M.L., Isom, O.W. and Crystal, R.G. Angiogenesis gene therapy. Phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 100 (1999) 468–474. Search in Google Scholar

[36] Schwarz, E.R., Speakman, M.T., Patterson, M., Hale, S.S., Isner, J.M., Kedes, L.H. and Kloner, R.A. Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat — angiogenesis and angioma formation. J. Am. Coll. Cardiol. 35 (2000) 1323–1330. http://dx.doi.org/10.1016/S0735-1097(00)00522-210.1016/S0735-1097(00)00522-2Search in Google Scholar

[37] Symes, J.F., Losordo, D.W., Vale, P.R., Lathi, K.G., Esakof, D.D., Mayskiy, M. and Isner, J.M. Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease. Ann. Thorac. Surg. 68 (1999) 830–836. http://dx.doi.org/10.1016/S0003-4975(99)00807-310.1016/S0003-4975(99)00807-3Search in Google Scholar

[38] Vale, P.R., Losordo, D.W., Milliken, C.E., Maysky, M., Esakof, D.D., Symes, J.F. and Isner, J.M. Left ventricular electromechanical mapping to assess efficacy of phVEGF165 gene transfer for therapeutic angiogenesis in chronic myocardial ischemia. Circulation 102 (2000) 965–974. Search in Google Scholar

[39] Houck, K.A., Ferrara, N., Winer, J., Cachianes, G., Li, B. and Leung, D.W. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol. Endocrinol. 5 (1991) 1806–1814. http://dx.doi.org/10.1210/mend-5-12-180610.1210/mend-5-12-1806Search in Google Scholar

[40] Gruchlik, A., Domal-Kwiatkowska, D., Stojko, K., Smolik, S., Stojko, A., Mazurek, U. and Wilczok, T. Expression of VEGF-A, VEGF-B genes and Flk-1 and Flt-1 receptors in the kidneys of Sprague Dowley rats lacking a left artery descending into the coronary. Med. Weter. 60 (2004) 84–87. Search in Google Scholar

[41] Veikkola, T., Karkkainen, M., Claesson-Welsh, L. and Alitalo, K. Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res. 60 (2000) 203–212. Search in Google Scholar

[42] Zheng, W., Seftor, E.A., Meininger, C.J., Hendrix, M.J. and Tomanek, R.J. Mechanisms of coronary angiogenesis in response to stretch: role of VEGF and TGF-β. Am. J. Physiol. Heart Circ. Physiol. 280 (2001) H909–H917. 10.1152/ajpheart.2001.280.2.H909Search in Google Scholar

[43] Mehrabi, M.R., Ekmekcioglu, C., Stanek, B., Thalhammer, T., Tamaddon, F., Pacher, R., Steiner, G.E., Wild, T., Grimm, M., Spieckermann, P.G., Mall, G. and Glogar, H.D. Angiogenesis stimulation in explanted hearts from patients pre-treated with intravenous prostaglandin E(1). J. Heart Lung Transplant. 20 (2001) 465–473. http://dx.doi.org/10.1016/S1053-2498(00)00317-X10.1016/S1053-2498(00)00317-XSearch in Google Scholar

[44] De Boer, R.A., Henning, R.H., Tio, R.A., Pinto, Y.M., Brouwer, R.M., Ploeg, R.J., Bohm, M., Van Gilst, W.H. and Van Veldhuisen, D.J. Identification of a specific pattern of downregulation in expression of isoforms of vascular endothelial growth factor in dilated cardiomyopathy. Heart 88 (2002) 412–414. http://dx.doi.org/10.1136/heart.88.4.41210.1136/heart.88.4.412Search in Google Scholar PubMed PubMed Central

Published Online: 2007-2-13
Published in Print: 2007-9-1

© 2007 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 2.6.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-007-0006-1/html
Scroll to top button