Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter March 1, 2006

Direct Rho-associated kinase inhibiton induces cofilin dephosphorylation and neurite outgrowth in PC-12 cells

  • Zhiqun Zhang EMAIL logo , Andrew Ottens , Stephen Larner , Firas Kobeissy , Melissa Williams , Ronald Hayes and Kevin Wang

Abstract

Axons fail to regenerate in the adult central nervous system (CNS) following injury. Developing strategies to promote axonal regeneration is therapeutically attractive for various CNS pathologies such as traumatic brain injury, stroke and Alzheimer’s disease. Because the RhoA pathway is involved in neurite outgrowth, Rho-associated kinases (ROCKs), downstream effectors of GTP-bound Rho, are potentially important targets for axonal repair strategies in CNS injuries. We investigated the effects and downstream mechanisms of ROCK inhibition in promoting neurite outgrowth in a PC-12 cell model. Robust neurite outgrowth (NOG) was induced by ROCK inhibitors Y-27632 and H-1152 in a time-and dose-dependent manner. Dramatic cytoskeletal reorganization was noticed upon ROCK inhibition. NOG initiated within 5 to 30 minutes followed by neurite extension between 6 and 10 hours. Neurite processes were then sustained for over 24 hours. Rapid cofilin dephosphorylation was observed within 5 minutes of Y-27632 and H-1152 treatment. Re-phosphorylation was observed by 6 hours after Y-27632 treatment, while H-1152 treatment produced sustained cofilin dephosphorylation for over 24 hours. The results suggest that ROCK-mediated dephosphorylation of cofilin plays a role in the initiation of NOG in PC-12 cells.

[1] McKerracher, L., David, S., Jackson, D.L., Kottis, V., Dunn, R.J. and Braun, P.E. Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13 (1994) 805–811. http://dx.doi.org/10.1016/0896-6273(94)90247-X10.1016/0896-6273(94)90247-XSearch in Google Scholar

[2] McKerracher, L. and David, S. Easing the brakes on spinal cord repair. Nat. Med. 10 (2004) 1052–1053. http://dx.doi.org/10.1038/nm1004-105210.1038/nm1004-1052Search in Google Scholar

[3] Wang, K.C., Koprivica, V., Kim, J.A., Sivasankaran, R., Guo, Y., Neve, R.L. and He, Z. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417 (2002) 941–944. http://dx.doi.org/10.1038/nature0086710.1038/nature00867Search in Google Scholar

[4] Fournier, A.E., Takizawa, B.T. and Strittmatter, S.M. Rho kinase inhibition enhances axonal regeneration in the injured CNS. J. Neurosci. 23 (2003) 1416–1423. Search in Google Scholar

[5] Lehmann, M., Fournier, A., Selles-Navarro, I., Dergham, P., Sebok, A., Leclerc, N., Tigyi, G. and McKerracher, L. Inactivation of Rho signaling pathway promotes CNS axon regeneration. J. Neurosci. 19 (1999) 7537–7547. Search in Google Scholar

[6] Yamashita, T., Higuchi, H. and Tohyama, M. The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho. J. Cell Biol. 157 (2002) 565–570. http://dx.doi.org/10.1083/jcb.20020201010.1083/jcb.200202010Search in Google Scholar

[7] Yamashita, T., Fujitani, M., Yamagishi, S., Hata, K. and Mimura, F. Multiple signals regulate axon regeneration through the nogo receptor complex. Mol. Neurobiol. 32 (2005) 105–112. http://dx.doi.org/10.1385/MN:32:2:10510.1385/MN:32:2:105Search in Google Scholar

[8] Bonini, S., Rasi, G., Bracci-Laudiero, M.L., Procoli, A. and Aloe, L. Nerve growth factor: neurotrophin or cytokine? Int. Arch. Allergy Immunol. 131 (2003) 80–84. http://dx.doi.org/10.1159/00007092210.1159/000070922Search in Google Scholar

[9] Ebadi, M., Bashir, R.M., Heidrick, M.L., Hamada, F.M., Refaey, H.E., Hamed, A., Helal, G., Baxi, M.D., Cerutis, D.R. and Lassi, N.K. Neurotrophins and their receptors in nerve injury and repair. Neurochem. Int. 30 (1997) 347–374. http://dx.doi.org/10.1016/S0197-0186(96)00071-X10.1016/S0197-0186(96)00071-XSearch in Google Scholar

[10] Petruska, J.C. and Mendell, L.M. The many functions of nerve growth factor: multiple actions on nociceptors. Neurosci. Lett. 361 (2004) 168–171. http://dx.doi.org/10.1016/j.neulet.2003.12.01210.1016/j.neulet.2003.12.012Search in Google Scholar

[11] Ozdinler, P.H. and Erzurumlu, R.S. Regulation of neurotrophin-induced axonal responses via Rho GTPases. J. Comp. Neurol. 438 (2001) 377–387. http://dx.doi.org/10.1002/cne.132110.1002/cne.1321Search in Google Scholar PubMed PubMed Central

[12] Yamaguchi, Y., Katoh, H., Yasui, H., Mori, K. and Negishi, M. RhoA inhibits the nerve growth factor-induced Rac1 activation through Rho-associated kinase-dependent pathway. J. Biol. Chem. 276 (2001) 18977–18983. http://dx.doi.org/10.1074/jbc.M10025420010.1074/jbc.M100254200Search in Google Scholar PubMed

[13] Kwon, B.K., Borisoff, J.F. and Tetzlaff, W. Molecular targets for therapeutic intervention after spinal cord injury. Mol. Intervent. 2 (2002) 244–258. http://dx.doi.org/10.1124/mi.2.4.24410.1124/mi.2.4.244Search in Google Scholar PubMed

[14] Amano, M., Fukata, Y. and Kaibuchi, K. Regulation and functions of Rho-associated kinase. Exp. Cell Res. 261 (2000) 44–51. http://dx.doi.org/10.1006/excr.2000.504610.1006/excr.2000.5046Search in Google Scholar PubMed

[15] Hall, A. Rho GTPases and the control of cell behaviour. Biochem. Soc. Trans. 33 (2005) 891–895. http://dx.doi.org/10.1042/BST2005089110.1042/BST20050891Search in Google Scholar PubMed

[16] Somlyo, A.P. and Somlyo, A.V. Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J. Physiol. 522 Pt 2 (2000) 177–185. http://dx.doi.org/10.1111/j.1469-7793.2000.t01-2-00177.x10.1111/j.1469-7793.2000.t01-2-00177.xSearch in Google Scholar PubMed PubMed Central

[17] Kawano, Y., Fukata, Y., Oshiro, N., Amano, M., Nakamura, T., Ito, M., Matsumura, F., Inagaki, M. and Kaibuchi, K. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J. Cell Biol. 147 (1999) 1023–1038. http://dx.doi.org/10.1083/jcb.147.5.102310.1083/jcb.147.5.1023Search in Google Scholar PubMed PubMed Central

[18] Riento, K. and Ridley, A.J. Rocks: multifunctional kinases in cell behaviour. Nat. Rev. Mol. Cell Biol. 4 (2003) 446–456. http://dx.doi.org/10.1038/nrm112810.1038/nrm1128Search in Google Scholar PubMed

[19] Greene, L.A. and Tischler, A.S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. 73 (1976) 2424–2428. http://dx.doi.org/10.1073/pnas.73.7.242410.1073/pnas.73.7.2424Search in Google Scholar PubMed PubMed Central

[20] Park, Y.H., Kantor, L., Guptaroy, B., Zhang, M., Wang, K.K. and Gnegy, M.E. Repeated amphetamine treatment induces neurite outgrowth and enhanced amphetamine-stimulated dopamine release in rat pheochromocytoma cells (PC12 cells) via a protein kinase C-and mitogen activated protein kinase-dependent mechanism. J. Neurochem. 87 (2003) 1546–1557. http://dx.doi.org/10.1046/j.1471-4159.2003.02127.x10.1046/j.1471-4159.2003.02127.xSearch in Google Scholar PubMed

[21] Sebok, A., Nusser, N., Debreceni, B., Guo, Z., Santos, M.F., Szeberenyi, J. and Tigyi, G. Different roles for RhoA during neurite initiation, elongation, and regeneration in PC12 cells. J. Neurochem. 73 (1999) 949–960. http://dx.doi.org/10.1046/j.1471-4159.1999.0730949.x10.1046/j.1471-4159.1999.0730949.xSearch in Google Scholar PubMed

[22] Tojima, T. and Ito, E. Signal transduction cascades underlying de novo protein synthesis required for neuronal morphogenesis in differentiating neurons. Prog. Neurobiol. 72 (2004) 183–193. http://dx.doi.org/10.1016/j.pneurobio.2004.03.00210.1016/j.pneurobio.2004.03.002Search in Google Scholar PubMed

[23] Dent, E.W. and Gertler, F.B. Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40 (2003) 209–227. http://dx.doi.org/10.1016/S0896-6273(03)00633-010.1016/S0896-6273(03)00633-0Search in Google Scholar

[24] Maekawa, M., Ishizaki, T., Boku, S., Watanabe, N., Fujita, A., Iwamatsu, A., Obinata, T., Ohashi, K., Mizuno, K. and Narumiya, S. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285 (1999) 895–898. http://dx.doi.org/10.1126/science.285.5429.89510.1126/science.285.5429.895Search in Google Scholar PubMed

[25] Ohashi, K., Nagata, K., Maekawa, M., Ishizaki, T., Narumiya, S. and Mizuno, K. Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop. J. Biol. Chem. 275 (2000) 3577–3582. http://dx.doi.org/10.1074/jbc.275.5.357710.1074/jbc.275.5.3577Search in Google Scholar PubMed

[26] Hashimoto, R., Nakamura, Y., Goto, H., Wada, Y., Sakoda, S., Kaibuchi, K., Inagaki, M. and Takeda, M. Domain-and site-specific phosphorylation of bovine NF-L by Rho-associated kinase. Biochem. Biophys. Res. Commun. 245 (1998) 407–411. http://dx.doi.org/10.1006/bbrc.1998.844610.1006/bbrc.1998.8446Search in Google Scholar PubMed

[27] Amano, M., Kaneko, T., Maeda, A., Nakayama, M., Ito, M., Yamauchi, T., Goto, H., Fukata, Y., Oshiro, N., Shinohara, A., Iwamatsu, A. and Kaibuchi, K. Identification of Tau and MAP2 as novel substrates of Rho-kinase and myosin phosphatase. J. Neurochem. 87 (2003) 780–790. http://dx.doi.org/10.1046/j.1471-4159.2003.02054.x10.1046/j.1471-4159.2003.02054.xSearch in Google Scholar PubMed

[28] Davies, S.P., Reddy, H., Caivano, M. and Cohen, P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351 (2000) 95–105. http://dx.doi.org/10.1042/0264-6021:351009510.1042/bj3510095Search in Google Scholar

[29] Ikenoya, M., Hidaka, H., Hosoya, T., Suzuki, M., Yamamoto, N. and Sasaki, Y. Inhibition of rho-kinase-induced myristoylated alanine-rich C kinase substrate (MARCKS) phosphorylation in human neuronal cells by H-1152, a novel and specific Rho-kinase inhibitor. J. Neurochem. 81 (2002) 9–16. http://dx.doi.org/10.1046/j.1471-4159.2002.00801.x10.1046/j.1471-4159.2002.00801.xSearch in Google Scholar PubMed

[30] Nakajima, M., Hayashi, K., Egi, Y., Katayama, K., Amano, Y., Uehata, M., Ohtsuki, M., Fujii, A., Oshita, K., Kataoka, H., Chiba, K., Goto, N. and Kondo, T. Effect of Wf-536, a novel ROCK inhibitor, against metastasis of B16 melanoma. Cancer Chemother. Pharmacol. 52 (2003) 319–324. http://dx.doi.org/10.1007/s00280-003-0641-910.1007/s00280-003-0641-9Search in Google Scholar PubMed

[31] Ishizaki, T., Uehata, M., Tamechika, I., Keel, J., Nonomura, K., Maekawa, M. and Narumiya, S. Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol. Pharmacol. 57 (2000) 976–983. Search in Google Scholar

[32] Christensen, A.E., Selheim, F., de Rooij, J., Dremier, S., Schwede, F., Dao, K.K., Martinez, A., Maenhaut, C., Bos, J.L., Genieser, H.G. and Doskeland, S.O. cAMP analog mapping of Epac1 and cAMP kinase. Discriminating analogs demonstrate that Epac and cAMP kinase act synergistically to promote PC-12 cell neurite extension. J. Biol. Chem. 278 (2003) 35394–35402. http://dx.doi.org/10.1074/jbc.M30217920010.1074/jbc.M302179200Search in Google Scholar PubMed

[33] Hundle, B., McMahon, T., Dadgar, J. and Messing, R.O. Overexpression of epsilon-protein kinase C enhances nerve growth factor-induced phosphorylation of mitogen-activated protein kinases and neurite outgrowth. J. Biol. Chem. 270 (1995) 30134–30140. http://dx.doi.org/10.1074/jbc.270.50.3013410.1074/jbc.270.50.30134Search in Google Scholar PubMed

[34] Obara, Y., Aoki, T., Kusano, M. and Ohizumi, Y. Beta-eudesmol induces neurite outgrowth in rat pheochromocytoma cells accompanied by an activation of mitogen-activated protein kinase. J. Pharmacol. Exp. Ther. 301 (2002) 803–811. http://dx.doi.org/10.1124/jpet.301.3.80310.1124/jpet.301.3.803Search in Google Scholar

[35] Birkenfeld, J., Betz, H. and Roth, D. Inhibition of neurite extension by overexpression of individual domains of LIM kinase 1. J. Neurochem. 78 (2001) 924–927. http://dx.doi.org/10.1046/j.1471-4159.2001.00500.x10.1046/j.1471-4159.2001.00500.xSearch in Google Scholar

[36] Fujita, A., Hattori, Y., Takeuchi, T., Kamata, Y. and Hata, F. NGF induces neurite outgrowth via a decrease in phosphorylation of myosin light chain in PC12 cells. Neuroreport 12 (2001) 3599–3602. http://dx.doi.org/10.1097/00001756-200111160-0004510.1097/00001756-200111160-00045Search in Google Scholar

[37] Kishida, S., Yamamoto, H. and Kikuchi, A. Wnt-3a and Dvl induce neurite retraction by activating Rho-associated kinase. Mol. Cell Biol. 24 (2004) 4487–4501. http://dx.doi.org/10.1128/MCB.24.10.4487-4501.200410.1128/MCB.24.10.4487-4501.2004Search in Google Scholar

[38] Sasaki, Y., Suzuki, M. and Hidaka, H. The novel and specific Rho-kinase inhibitor (S)-(+)-2-methyl-1-[(4-methyl-5-isoquinoline)sulfonyl]-homopiperazine as a probing molecule for Rho-kinase-involved pathway. Pharmacol. Ther. 93 (2002) 225–232. http://dx.doi.org/10.1016/S0163-7258(02)00191-210.1016/S0163-7258(02)00191-2Search in Google Scholar

[39] Braun, H., Schafer, K. and Hollt, V. BetaIII tubulin-expressing neurons reveal enhanced neurogenesis in hippocampal and cortical structures after a contusion trauma in rats. J. Neurotrauma 19 (2002) 975–983. http://dx.doi.org/10.1089/08977150232031712210.1089/089771502320317122Search in Google Scholar

[40] Aizawa, H., Wakatsuki, S., Ishii, A., Moriyama, K., Sasaki, Y., Ohashi, K., Sekine-Aizawa, Y., Sehara-Fujisawa, A., Mizuno, K., Goshima, Y. and Yahara, I. Phosphorylation of cofilin by LIM-kinase is necessary for semaphorin 3A-induced growth cone collapse. Nat. Neurosci. 4 (2001) 367–373. http://dx.doi.org/10.1038/8601110.1038/86011Search in Google Scholar

[41] Niwa, R., Nagata-Ohashi, K., Takeichi, M., Mizuno, K. and Uemura, T. Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108 (2002) 233–246. http://dx.doi.org/10.1016/S0092-8674(01)00638-910.1016/S0092-8674(01)00638-9Search in Google Scholar

[42] Ambach, A., Saunus, J., Konstandin, M., Wesselborg, S., Meuer, S.C. and Samstag, Y. The serine phosphatases PP1 and PP2A associate with and activate the actin-binding protein cofilin in human T lymphocytes. Eur. J. Immunol. 30 (2000) 3422–3431. http://dx.doi.org/10.1002/1521-4141(2000012)30:12<3422::AID-IMMU3422>3.0.CO;2-J10.1002/1521-4141(2000012)30:12<3422::AID-IMMU3422>3.0.CO;2-JSearch in Google Scholar

[43] Revenu, C., Athman, R., Robine, S. and Louvard, D. The co-workers of actin filaments: from cell structures to signals. Nat. Rev. Mol. Cell Biol. 5 (2004) 635–646. http://dx.doi.org/10.1038/nrm143710.1038/nrm1437Search in Google Scholar

[44] Zhou, Y., Su, Y., Li, B., Liu, F., Ryder, J.W., Wu, X., Gonzalez-DeWhitt, P.A., Gelfanova, V., Hale, J.E., May, P.C., Paul, S.M. and Ni, B. Nonsteroidal anti-inflammatory drugs can lower amyloidogenic Abeta42 by inhibiting Rho. Science 302 (2003) 1215–1217. http://dx.doi.org/10.1126/science.109015410.1126/science.1090154Search in Google Scholar

[45] Ellezam, B., Dubreuil, C., Winton, M., Loy, L., Dergham, P., Selles-Navarro, I. and McKerracher, L. Inactivation of intracellular Rho to stimulate axon growth and regeneration. Prog. Brain. Res. 137 (2002) 371–380. http://dx.doi.org/10.1016/S0079-6123(02)37028-610.1016/S0079-6123(02)37028-6Search in Google Scholar

[46] Brabeck, C., Beschorner, R., Conrad, S., Mittelbronn, M., Bekure, K., Meyermann, R., Schluesener, H.J. and Schwab, J.M. Lesional expression of RhoA and RhoB following traumatic brain injury in humans. J. Neurotrauma 21 (2004) 697–706. http://dx.doi.org/10.1089/089771504126959710.1089/0897715041269597Search in Google Scholar PubMed

[47] Brabeck, C., Mittelbronn, M., Bekure, K., Meyermann, R., Schluesener, H.J. and Schwab, J.M. Effect of focal cerebral infarctions on lesional RhoA and RhoB expression. Arch. Neurol. 60 (2003) 1245–1249. http://dx.doi.org/10.1001/archneur.60.9.124510.1001/archneur.60.9.1245Search in Google Scholar PubMed

Published Online: 2006-3-1
Published in Print: 2006-3-1

© 2006 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-006-0002-x/html
Scroll to top button