Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access November 6, 2009

Sensitivity of bacterial vs. acute Daphnia magna toxicity tests to metals

  • Ivana Teodorovic EMAIL logo , Ivana Planojevic , Petar Knezevic , Sonja Radak and Irena Nemet
From the journal Open Life Sciences

Abstract

The objectives of this study were to evaluate the sensitivity of two bacterial tests commonly used in metal toxicity screening — the Vibrio fischeri bioluminescence inhibition test and the Pseudomonas putida growth inhibition test — in comparison to the standard acute Daphnia magna test, and to estimate applicability of the selected methods to the toxicity testing of environmental samples. The D. magna acute test proved to be more sensitive to cadmium (Cd), zinc (Zn) and manganese (Mn) than the two bacterial assays, whereas P. putida seems to be the most sensitive species to lead (Pb). Manganese appears to be slightly toxic to D. magna and non-toxic to the two selected bacteria. This leads to the conclusion that even in regions with high background concentrations, manganese would not act as a confounding factor. Low sensitivity of V. fischeri to heavy metals questions its applicability as the first screening method in assessing various environmental samples. Therefore, it is not advisable to replace D. magna with bacterial species for metal screening tests. P. putida, V. fischeri and/or other bacterial tests should rather be applied in a complex battery of ecotoxicological tests, as their tolerance to heavy metals can unravel other potentially present toxic substances and mixtures, undetectable by metal-sensitive species.

[1] Girotti S., Ferri E.N., Fumo M.G., Maiolini E., Monitoring of environmental pollutants by bioluminescent bacteria, Anal. Chim. Acta, 2008, 608, 2–29 http://dx.doi.org/10.1016/j.aca.2007.12.00810.1016/j.aca.2007.12.008Search in Google Scholar PubMed

[2] Davoren M, Shuilleabhain S.N., O’Halloran J., Hartl M.G.J., Sheehan D., O’Brien N.M., et al., A Test Battery Approach for the Ecotoxicological Evaluation of Estuarine Sediments, Ecotoxicology, 2005, 14, 741–755 http://dx.doi.org/10.1007/s10646-005-0022-810.1007/s10646-005-0022-8Search in Google Scholar PubMed

[3] Pandard P., Devillers J., Charissou A., Poulsen V., Jourdan M., Ferard J., et al., Selecting a battery of bioasseys for ecotoxicological characterisation of wastes, Sci. Total Environ., 2006, 363, 114–125 http://dx.doi.org/10.1016/j.scitotenv.2005.12.01610.1016/j.scitotenv.2005.12.016Search in Google Scholar PubMed

[4] Coleman R.N., Qureshi A.A., Microtox and Spirillum volutans Tests for Assessing Toxicity of Environmental Samples, Bull. Environ. Contam. Toxicol., 1985, 35, 443–451 http://dx.doi.org/10.1007/BF0163653610.1007/BF01636536Search in Google Scholar PubMed

[5] Araujo C.V.M., Nascimento R.B., Oliveira C.A., Strotmann U.J., Da Silva E.M., The use of Microtox to assess toxicity removal of industrial effluents from the industrial district of Camacari (BA, Brazil), Chemosphere, 2005, 58, 1277–1281 http://dx.doi.org/10.1016/j.chemosphere.2004.10.03610.1016/j.chemosphere.2004.10.036Search in Google Scholar PubMed

[6] Zgajnar Gotvajna A., Tisler T., Zagorc-Koncan J., Comparison of different treatment strategies for industrial landfill leachate, J. Hazar. Mater., 2009, 162, 1446–1456 http://dx.doi.org/10.1016/j.jhazmat.2008.06.03710.1016/j.jhazmat.2008.06.037Search in Google Scholar PubMed

[7] Chang J.C., Taylor P.B., Leach F.R., Use of the Microtox Assay System for Environmental Samples, Bull. Environ. Contam. Toxicol., 1981, 26, 150–156 http://dx.doi.org/10.1007/BF0162206910.1007/BF01622069Search in Google Scholar PubMed

[8] Cheung Y.H, Neller A., Chu K.H., Tam N.F.Y., Wong C.K., Wong Y.S., et al., Assessment of Sediment Toxicity Using Different Trophic Organisms, Arch. Environ. Con. Tox., 1997, 32, 260–267 http://dx.doi.org/10.1007/s00244990018310.1007/s002449900183Search in Google Scholar PubMed

[9] Ingersoll C.G., MacDonald D.D., Brumbaugh W.G., Johnson B.T., Kemble N.E., Kunz J.L., et al., Toxicity Assessment of Sediments from the Grand Calumet River and Indiana Harbor Canal in Northwestern Indiana, USA, Arch. Environ. Con. Tox., 2002, 43, 156–167 http://dx.doi.org/10.1007/s00244-001-0051-010.1007/s00244-001-0051-0Search in Google Scholar PubMed

[10] Eisman M.P., Landon-Arnold S., Swindoll C.M., Determination of Petroleum Hydrocarbon Toxicity with Microtox, Bull. Environ. Contam. Toxicol., 1991, 47, 811–816 http://dx.doi.org/10.1007/BF0168950810.1007/BF01689508Search in Google Scholar PubMed

[11] Sweet L.I., Meier P.G., Lethal and Sublethal Effects of Azulene and Longifolene to Microtox®, Ceriodaphnia dubia, Daphnia magna, and Pimephales promelas, Bull. Environ. Contam. Toxicol., 1997, 58, 268–274 http://dx.doi.org/10.1007/s00128990033010.1007/s001289900330Search in Google Scholar

[12] Bois F., Vaillant M., Vasseur P., Multiple Regression Analysis of Toxic Interactions: Application to the Microtox Test and General Comments, Bull. Environ. Contam. Toxicol., 1986, 36, 707–714 http://dx.doi.org/10.1007/BF0162357310.1007/BF01623573Search in Google Scholar

[13] Altenburger R., Backhause T., Boedeker W., Faust M., Scholze M., Grimme L.H., Predictability of the toxicity of multiple chemical mixtures to Vibrio fischeri: Mixtures composed of similarly acting chemicals, Environ. Toxicol. Chem., 2000, 19, 2341–2347 http://dx.doi.org/10.1897/1551-5028(2000)019<2341:POTTOM>2.3.CO;210.1897/1551-5028(2000)019<2341:POTTOM>2.3.CO;2Search in Google Scholar

[14] Backhause T., Altenburger R., Boedeker W., Faust M., Scholze M., Grimme L.H., Predictability of the toxicity of a multiple mixtures of dissimilarly acting chemicals to Vibrio fischeri, Environ. Toxicol. Chem., 2000, 19, 2348–2356 http://dx.doi.org/10.1897/1551-5028(2000)019<2348:POTTOA>2.3.CO;210.1897/1551-5028(2000)019<2348:POTTOA>2.3.CO;2Search in Google Scholar

[15] Fulladosa E., Murat J.C., Villaescusa I., Study on the toxicity of binary equitoxic mixtures of metals using the luminescent bacteria Vibrio fischeri as a biological target, Chemosphere, 2005, 58, 551–557 http://dx.doi.org/10.1016/j.chemosphere.2004.08.00710.1016/j.chemosphere.2004.08.007Search in Google Scholar

[16] Fulladosa E, Murat J.C., Martınez M., Villaescusa J., Patterns of metals and arsenic poisoning in Vibrio fischeri bacteria, Chemosphere, 2005, 60, 43–48 http://dx.doi.org/10.1016/j.chemosphere.2004.12.02610.1016/j.chemosphere.2004.12.026Search in Google Scholar

[17] Dutka B.J., Kwan K.K., Comparison of Three Microbial Toxicity Screening Tests with the Microtox Test, Bull. Environ. Contam Toxicol., 1981, 27, 753–757 http://dx.doi.org/10.1007/BF0161109110.1007/BF01611091Search in Google Scholar

[18] ISO 10712:1995, Water quality — Pseudomonas putida growth inhibition test (Pseudomonas cell multiplication inhibition test), International Organisation for standardisation, Geneve, Switzerland, 1995 Search in Google Scholar

[19] Schmitz R.P.H., Eisentrager A., Dott W., Miniaturized kinetic growth inhibition assays with Vibrio fischeri and Pseudomonas putida (application, validation and comparison), J. Microbiol. Met., 1998, 31, 159–166 http://dx.doi.org/10.1016/S0167-7012(97)00098-510.1016/S0167-7012(97)00098-5Search in Google Scholar

[20] Sutterlin H., Alexy R., Kummerer K., The toxicity of the quaternary ammonium compound benzalkonium chloride alone and in mixtures with other anionic compounds to bacteria in test systems with Vibrio fischeri and Pseudomonas putida, Ecotox. Environ. Safe., 2008, 71, 498–505 http://dx.doi.org/10.1016/j.ecoenv.2007.12.01510.1016/j.ecoenv.2007.12.015Search in Google Scholar

[21] García-Ripoll A., Amata A.M., Arques A., Vicente R., Ballesteros Martín M.M., Sánchez Pérez J.A., et al., Confirming Pseudomonas putida as a reliable bioassay for demonstrating biocompatibility enhancement by solar photo-oxidative processes of a biorecalcitrant effluent, J. Hazard. Mater., 2009, 162, 1223–1227 http://dx.doi.org/10.1016/j.jhazmat.2008.06.01010.1016/j.jhazmat.2008.06.010Search in Google Scholar

[22] Castillo G.C., Vila I.C., Neild E., Ecotoxicity Assessment of Metals and Wastewater using Multitrophic Assays, Environ. Toxicol., 2000, 15, 370–375 http://dx.doi.org/10.1002/1522-7278(2000)15:5<370::AID-TOX3>3.0.CO;2-S10.1002/1522-7278(2000)15:5<370::AID-TOX3>3.0.CO;2-SSearch in Google Scholar

[23] Choi K., Meier P.G., Toxicity Evaluation of Metal Plating Wastewater Employing the Microtox Assay: A Comparison with Cladocerans and Fish, Environ. Toxicol., 2001, 16, 136–141 http://dx.doi.org/10.1002/tox.101710.1002/tox.1017Search in Google Scholar

[24] Kungolos A., Hadjispyrou S., Petala M., Tsiridis V., Samaras P., Sakellaropoulos G.P., Toxic properties of metals and organotin compounds and their interactions on Daphnia magna and Vibrio fischeri, Water Air Soil Poll.: Focus, 2004, 4, 101–110 http://dx.doi.org/10.1023/B:WAFO.0000044790.41200.0410.1023/B:WAFO.0000044790.41200.04Search in Google Scholar

[25] Dalmacija B., Prica M., Ivančev-Tumbas I., van der Kooij A., Roncevic S., Krcmar D., Bikit I, et al., Pollution of the Begej Canal sediment — metals, radioactivity and toxicity assessment, Environ Int., 2006, 32, 606–615 http://dx.doi.org/10.1016/j.envint.2006.01.00610.1016/j.envint.2006.01.006Search in Google Scholar

[26] Teodorovic I., Becelic M., Planojevic I., Ivancev-Tumbas I., Dalmacija B., The relationship between whole effluent toxicity (WET) and chemical-based effluent quality assessment in Vojvodina (Serbia). Environ. Monit. Assess., (in press), DOI 10.1007/ s10661-008-0591-0 Search in Google Scholar

[27] ISO 6341:1996, Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea) — Acute toxicity test, International Organization for Standardization, Geneve, Switzerland, 1996 Search in Google Scholar

[28] Teodorovic I., Planojevic, I., Daphnia magna culturing methods — implications on chronic toxicity tests, Fresenius Environ. Bull., 2008, 17, 985–991 Search in Google Scholar

[29] Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms, 5th ed., EPA-821-R-02-012. U.S. Environmental Protection Agency, Cincinnati, OH, 2002 Search in Google Scholar

[30] ISO 11348-3:2007, Water quality — Determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test) — Part 3: Method using freeze-dried bacteria, International Organisation for standardisation, Geneve, Switzerland, 2007 Search in Google Scholar

[31] Dierickx P.J., Bredael-Rozen, E., Correlation Between the In Vitro Cytotoxicity of Inorganic Metal Compounds to Cultured Fathead Minnow Fish Cells and the Toxicity to Daphnia magna, Bull. Environ. Contam. Toxicol., 1996, 57, 107–110 http://dx.doi.org/10.1007/s00128990016210.1007/s001289900162Search in Google Scholar

[32] Sorvari J., Sillanpaa M., Influence of Metal Complex Formation on Heavy Metal and Free EDTA and DTPA Acute Toxicity Determined by Daphnia magna, Chemosphere, 1996, 33, 1119–1127 http://dx.doi.org/10.1016/0045-6535(96)00251-210.1016/0045-6535(96)00251-2Search in Google Scholar

[33] Arambašić M.B., Bjelić S., Subakov G., Acute Toxicity of Heavy Metals (Copper, Lead, Zinc), Phenol and Sodium on Allium cepa L., Lepidium sativum L. and Daphnia magna St.: Comparative investigations and the practical applications, Water Res., 1995, 29, 497–503 http://dx.doi.org/10.1016/0043-1354(94)00178-A10.1016/0043-1354(94)00178-ASearch in Google Scholar

[34] Rosen G., Osoiro-Robayo A., Rivera-Duarte I., Lapota D., Comparison of Biolumininescent Dinoflagellate (QwikLite) and Bacterial (Microtox) Rapid Bioassays for the Detection of Metal and Ammonia Toxicity, Arch. Environ. Con. Tox., 2007, 54, 606–611 http://dx.doi.org/10.1007/s00244-007-9068-310.1007/s00244-007-9068-3Search in Google Scholar

[35] Ishaque A.B., Johnson L., Gerald T., Boucaud D., Okoh J., Tchounwou P.B., Assessment of Individual and Combined Toxicities of Four Non-Essential Metals (As, Cd, Hg and Pb) in the Microtox Assay, Int. J. Environ. Res. Public Health, 2006, 3, 118–120 http://dx.doi.org/10.3390/ijerph200603001410.3390/ijerph2006030014Search in Google Scholar

[36] Bauda P., Block J.C., Role of envelops of Gramnegative bacteria in cadmium binding and toxicity, Toxic. Assess., 1990, 5, 47–60 http://dx.doi.org/10.1002/tox.254005010510.1002/tox.2540050105Search in Google Scholar

[37] Fulladosa E., Murat J.C, Villaescusa I., Effect of Cadmium(II), Chromium(VI), and Arsenic(V) on Long-Term Viability- and Growth-Inhibition Assays Using Vibrio fischeri Marine Bacteria, Arch. Environ. Con. Tox., 2005, 49, 299–306 http://dx.doi.org/10.1007/s00244-004-0170-510.1007/s00244-004-0170-5Search in Google Scholar

[38] Prokop Z., Cupr P., Zlevorova-Zlamalikova V., Komarek J., Dusek L., Holoubek I., Mobility, bioavailability, and toxic effects of cadmium in soil samples, Environ. Res., 2003, 91, 119–126 http://dx.doi.org/10.1016/S0013-9351(02)00012-910.1016/S0013-9351(02)00012-9Search in Google Scholar

[39] Codina J.C., Perez-Garcia A., Romero P., De Vicente A., A comparison of microbial bioassays for the detection of metal toxicity, Arch. Environ. Cont. Tox., 1993, 25, 250–254 10.1007/BF00212137Search in Google Scholar

[40] Sponza D.T., Necessity of toxicity assessment in Turkish industrial discharges (examples from metal and textile industry effluents), Environ. Monit. Assess., 2002, 73, 41–66 http://dx.doi.org/10.1023/A:101266321315310.1023/A:1012663213153Search in Google Scholar

[41] Rodriguez P., Martinez-Madrid M., Cid A., Ecotoxicological assessment of effluents in the Basque country (Northern Spain) by acute and chronic toxicity tests using Daphnia magna Straus, Ecotoxicology, 2006, 15, 559–572 http://dx.doi.org/10.1007/s10646-006-0091-310.1007/s10646-006-0091-3Search in Google Scholar

[42] Bhattacharyya J., Read D., Amos S., Dooley S., Killham K., Paton G.I., Biosensor-based diagnostics of contaminated groundwater: assessment and remediation strategy, Environ. Monit. Assess., 2005, 134, 485–492 10.1016/j.envpol.2004.09.002Search in Google Scholar

[43] Hernando M.D., Fernandez-Alba A.R., Tauler R., Barcelo D., Toxicity assays applied to wastewater treatment, Talanta, 2005, 65, 358–366 http://dx.doi.org/10.1016/j.talanta.2004.07.01210.1016/j.talanta.2004.07.012Search in Google Scholar

[44] Johnson I., Hutchings M., Benstead R., Thain J., Whitehouse P., Bioassay Selection, Experimental Design and Quality Control/Assurance for use in Effluent Assessment and Control, Ecotoxicology, 2004, 13, 437–447 http://dx.doi.org/10.1023/B:ECTX.0000035294.15964.9a10.1023/B:ECTX.0000035294.15964.9aSearch in Google Scholar

[45] Manusadzianas L., Balkelyte L., Sadauskas K., Blinova I., Pollumaa L., Kahru A., Ecotoxicological study of Lithuanian and Estonian wastewaters: selection of the biotests, and correspondence between toxicity and chemical-based indices, Aquat. Toxicol., 2003, 63, 27–41 http://dx.doi.org/10.1016/S0166-445X(02)00132-710.1016/S0166-445X(02)00132-7Search in Google Scholar

[46] Maxam G., Rila J.P., Dott W., Eisentraeger A., Use of Bioassays for Assessment of Water-Extractable Ecotoxic Potential of Soils, Ecotoxicol. Environ. Saf., 2000, 45, 240–246 http://dx.doi.org/10.1006/eesa.1999.185510.1006/eesa.1999.1855Search in Google Scholar PubMed

[47] Planojevic I., Optimalan izbor testova za procenu ekotoksičnosti kontaminiranog sedimenta, MSc thesis, University of Novi Sad Faculty of Sciences, Novi Sad, Serbia, 2007, (in Serbian) Search in Google Scholar

Published Online: 2009-11-6
Published in Print: 2009-12-1

© 2009 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-009-0048-7/html
Scroll to top button