Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 19, 2013

Reduced-order anti-synchronization of the projections of the fractional order hyperchaotic and chaotic systems

  • Mayank Srivastava EMAIL logo , Saurabh Agrawal and Subir Das
From the journal Open Physics

Abstract

The article aims to study the reduced-order anti-synchronization between projections of fractional order hyperchaotic and chaotic systems using active control method. The technique is successfully applied for the pair of systems viz., fractional order hyperchaotic Lorenz system and fractional order chaotic Genesio-Tesi system. The sufficient conditions for achieving anti-synchronization between these two systems are derived via the Laplace transformation theory. The fractional derivative is described in Caputo sense. Applying the fractional calculus theory and computer simulation technique, it is found that hyperchaos and chaos exists in the fractional order Lorenz system and fractional order Genesio-Tesi system with order less than 4 and 3 respectively. The lowest fractional orders of hyperchaotic Lorenz system and chaotic Genesio-Tesi system are 3.92 and 2.79 respectively. Numerical simulation results which are carried out using Adams-Bashforth-Moulton method, shows that the method is reliable and effective for reduced order anti-synchronization.

[1] R. Hifer, Applications of Fractional Calculus in Physics (World Scientific, New Jersey, 2001) Search in Google Scholar

[2] I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999) Search in Google Scholar

[3] R.C. Koeller, J. Appl. Mech. 51, 299 (1984) http://dx.doi.org/10.1115/1.316761610.1115/1.3167616Search in Google Scholar

[4] H. H. Sun, A. A. Abdelwahed, B. Onaral, IEEE T. Autom. Control 29, 441 (1984) http://dx.doi.org/10.1109/TAC.1984.110355110.1109/TAC.1984.1103551Search in Google Scholar

[5] M. Ichise, Y. Nagayanagi, T. Kojima, J. Electroanal. Chem. 33, 253 (1971) http://dx.doi.org/10.1016/S0022-0728(71)80115-810.1016/S0022-0728(71)80115-8Search in Google Scholar

[6] O. Heaviside, Electromagnetic theory (Chelsea, New York, 1971) Search in Google Scholar

[7] N. Laskin, Physica A 287, 482 (2000) http://dx.doi.org/10.1016/S0378-4371(00)00387-310.1016/S0378-4371(00)00387-3Search in Google Scholar

[8] D. Kunsezov, A. Bulagc, G. D. Dang, Phys. Rev. Lett. 82, 1136 (1999) http://dx.doi.org/10.1103/PhysRevLett.82.113610.1103/PhysRevLett.82.1136Search in Google Scholar

[9] T.T. Hartley, C.F. Lorenzo, Nonlinear Dyn. 29, 201 (2002) http://dx.doi.org/10.1023/A:101653492158310.1023/A:1016534921583Search in Google Scholar

[10] S.G. Samko, A.A. Kilbas, O.I. Maricev, Fractional Integrals and Derivatives, Theory and Applications (Gordon and Breach, 1993) Search in Google Scholar

[11] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Amsterdam, Elsevier Science, 2006) Search in Google Scholar

[12] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos (World Scientific 2012) 10.1142/8180Search in Google Scholar

[13] L. M. Pecora, T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990) http://dx.doi.org/10.1103/PhysRevLett.64.82110.1103/PhysRevLett.64.821Search in Google Scholar PubMed

[14] B. Blasius, A. Huppert, L. Stone, Nature 399, 354 (1999) http://dx.doi.org/10.1038/2067610.1038/20676Search in Google Scholar PubMed

[15] M. Lakshmanan, K. Murali, Chaos in Nonlinear Oscillators: Controlling and Synchronization (World Scientific, Singapore, 1996) 10.1142/2637Search in Google Scholar

[16] S. K. Han, C. Kerrer, Y. Kuramoto, Phys. Rev. Lett. 75, 3190 (1995) http://dx.doi.org/10.1103/PhysRevLett.75.319010.1103/PhysRevLett.75.3190Search in Google Scholar

[17] K. Murali, M. Lakshmanan, Appld. Math. Mech. 11, 1309 (2003) Search in Google Scholar

[18] A. Razminia, D. Baleanu, J. Comput. Nonlin. Dyn. 8, 31012, (2013) http://dx.doi.org/10.1115/1.402316510.1115/1.4023165Search in Google Scholar

[19] J. W. Shuai, K. W. Wong, Phys. Rev. E 57, 7002 (1998) http://dx.doi.org/10.1103/PhysRevE.57.700210.1103/PhysRevE.57.7002Search in Google Scholar

[20] R. Roy, K. S. Thornburg, Phys. Rev. Lett. 72, 2009 (1994) http://dx.doi.org/10.1103/PhysRevLett.72.200910.1103/PhysRevLett.72.2009Search in Google Scholar

[21] M. Srivastava, S. K. Agrawal, S. Das, Int. J. Nonlinear Sci. 13, 482 (2012) Search in Google Scholar

[22] M. T. Yassen, Chaos Soliton. Fract. 23, 1527 (2005) 10.1016/S0960-0779(04)00414-XSearch in Google Scholar

[23] X. Wu, J. Lü, Chaos Soliton. Fract. 18, 721 (2003) http://dx.doi.org/10.1016/S0960-0779(02)00659-810.1016/S0960-0779(02)00659-8Search in Google Scholar

[24] H. Delavari, D.M. Senejohnny, D. Baleanu, Cent. Eur. J. Phys. 10, 1095 (2012) http://dx.doi.org/10.2478/s11534-012-0073-410.2478/s11534-012-0073-4Search in Google Scholar

[25] S. K. Agrawal, M. Srivastava, S. Das, Chaos Soliton. Fract. 45, 737 (2012) http://dx.doi.org/10.1016/j.chaos.2012.02.00410.1016/j.chaos.2012.02.004Search in Google Scholar

[26] Y. Zhang, J. Sun, Phys. Lett. A 330, 442 (2004) http://dx.doi.org/10.1016/j.physleta.2004.08.02310.1016/j.physleta.2004.08.023Search in Google Scholar

[27] M. G. Rosenblum, A. S. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 4193 (1997) http://dx.doi.org/10.1103/PhysRevLett.78.419310.1103/PhysRevLett.78.4193Search in Google Scholar

[28] G. Si, Z. Sun, Y. Zhang, W. Chen, Nonlinear Anal. Real World Appl. 13, 1761 (2012) http://dx.doi.org/10.1016/j.nonrwa.2011.12.00610.1016/j.nonrwa.2011.12.006Search in Google Scholar

[29] P. Zhoua, W. Zhu, Nonlinear Anal. Real World Appl. 12, 811 (2011) http://dx.doi.org/10.1016/j.nonrwa.2010.08.00810.1016/j.nonrwa.2010.08.008Search in Google Scholar

[30] J. P. Yan, C. P. Li, Chaos Soliton. Fract. 32, 725 (2007) http://dx.doi.org/10.1016/j.chaos.2005.11.06210.1016/j.chaos.2005.11.062Search in Google Scholar

[31] G. H. Erjaee, H. Taghvafard, Commun. Nonlinear Sci. Numer. Simulat. 16, 4079 (2011) http://dx.doi.org/10.1016/j.cnsns.2011.02.01510.1016/j.cnsns.2011.02.015Search in Google Scholar

[32] X. Y. Wang, J. M. Song, Commun Nonlinear Sci. Numer. Simulat. 14, 3351 (2009) http://dx.doi.org/10.1016/j.cnsns.2009.01.01010.1016/j.cnsns.2009.01.010Search in Google Scholar

[33] S. K. Agrawal, M. Srivastava, S. Das, Nonlinear Dyn. 69, 2277 (2012) http://dx.doi.org/10.1007/s11071-012-0426-y10.1007/s11071-012-0426-ySearch in Google Scholar

[34] R. Femat, G. Perales, Phys. Rev. E 65, 036226 (2002) http://dx.doi.org/10.1103/PhysRevE.65.03622610.1103/PhysRevE.65.036226Search in Google Scholar PubMed

[35] M. Ho, Y. Hung, Z. Liua, I. Jiang, Phys. Lett. A 348, 251 (2006) http://dx.doi.org/10.1016/j.physleta.2005.08.07610.1016/j.physleta.2005.08.076Search in Google Scholar

[36] S. Bowong, Phys. Lett. A 326, 102 (2004) http://dx.doi.org/10.1016/j.physleta.2004.04.00410.1016/j.physleta.2004.04.004Search in Google Scholar

[37] M. M. Al-sawalha, M. S. M. Noorani, Commun. Nonlinear Sci. Numer. Simulat. 15, 3022 (2010) http://dx.doi.org/10.1016/j.cnsns.2009.11.00110.1016/j.cnsns.2009.11.001Search in Google Scholar

[38] M. M. Al-sawalha, M. S. M. Noorani, Commun. Nonlinear Sci. Numer. Simulat. 17, 1908 (2012) http://dx.doi.org/10.1016/j.cnsns.2011.07.01510.1016/j.cnsns.2011.07.015Search in Google Scholar

[39] S. A. Lazzouni, S. Bowong, F. M. M. Kakmeni, B. Cherki, Commun. Nonlinear Sci. Numer. Simulat. 12, 568 (2007) http://dx.doi.org/10.1016/j.cnsns.2005.04.00310.1016/j.cnsns.2005.04.003Search in Google Scholar

[40] X. Wang, M. Wang, Physica A 387, 3751 (2008) http://dx.doi.org/10.1016/j.physa.2008.02.02010.1016/j.physa.2008.02.020Search in Google Scholar

[41] R. Genesio, A. Tesi, Automatica 28, 531 (1992) http://dx.doi.org/10.1016/0005-1098(92)90177-H10.1016/0005-1098(92)90177-HSearch in Google Scholar

[42] M. R. Faieghia, H. Delavari, Commun. Nonlinear Sci. Numer. Simulat. 17, 731 (2012) http://dx.doi.org/10.1016/j.cnsns.2011.05.03810.1016/j.cnsns.2011.05.038Search in Google Scholar

[43] H.J. Haubold, A.M. Mathai, R.K. Saxena, Journal of Applied Mathematics 2011, 1, doi:10.1155/2011/298628 10.1155/2011/298628Search in Google Scholar

[44] K. Diethelm, J. Ford, A. Freed, Numer. Algorithms 36, 31 (2004) http://dx.doi.org/10.1023/B:NUMA.0000027736.85078.be10.1023/B:NUMA.0000027736.85078.beSearch in Google Scholar

[45] K. Diethelm, J. Ford, Appl. Math. Comput. 154, 621 (2004) http://dx.doi.org/10.1016/S0096-3003(03)00739-210.1016/S0096-3003(03)00739-2Search in Google Scholar

Published Online: 2013-12-19
Published in Print: 2013-10-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11534-013-0310-5/html
Scroll to top button