Skip to main content
Log in

A finite difference approach for the initial-boundary value problem of the fractional Klein-Kramers equation in phase space

  • Research Article
  • Published:
Central European Journal of Mathematics

Abstract

Considering the features of the fractional Klein-Kramers equation (FKKE) in phase space, only the unilateral boundary condition in position direction is needed, which is different from the bilateral boundary conditions in [Cartling B., Kinetics of activated processes from nonstationary solutions of the Fokker-Planck equation for a bistable potential, J. Chem. Phys., 1987, 87(5), 2638–2648] and [Deng W., Li C., Finite difference methods and their physical constrains for the fractional Klein-Kramers equation, Numer. Methods Partial Differential Equations, 2011, 27(6), 1561–1583]. In the paper, a finite difference scheme is constructed, where temporal fractional derivatives are approximated using L1 discretization. The advantages of the scheme are: for every temporal level it can be dealt with from one side to the other one in position direction, and for any fixed position only a tri-diagonal system of linear algebraic equations needs to be solved. The computational amount reduces compared with the ADI scheme in [Cartling B., Kinetics of activated processes from nonstationary solutions of the Fokker-Planck equation for a bistable potential, J. Chem. Phys., 1987, 87(5), 2638–2648] and the five-point scheme in [Deng W., Li C., Finite difference methods and their physical constrains for the fractional Klein-Kramers equation, Numer. Methods Partial Differential Equations, 2011, 27(6), 1561–1583]. The stability and convergence are proved and two examples are included to show the accuracy and effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barkai E., Silbey R.J., Fractional Kramers equation, Journal of Physical Chemistry B, 2000, 104(16), 3866–3874

    Article  Google Scholar 

  2. Bicout D.J., Berezhkovskii A.M., Szabo A., Irreversible bimolecular reactions of Langevin particles, J. Chem. Phys., 2001, 114(5), 2293–2303

    Article  Google Scholar 

  3. Cartling B., Kinetics of activated processes from nonstationary solutions of the Fokker-Planck equation for a bistable potential, J. Chem. Phys., 1987, 87(5), 2638–2648

    Article  Google Scholar 

  4. Chen S., Liu F., Zhuang P., Anh V., Finite difference approximations for the fractional Fokker-Planck equation, Appl. Math. Model., 2009, 33(1), 256–273

    Article  MathSciNet  MATH  Google Scholar 

  5. Coffey W.T., Kalmykov Y.P., Titov S.V., Inertial effects in anomalous dielectric relaxation, Journal of Molecular Liquids, 2004, 114, 35–41

    Article  Google Scholar 

  6. Coffey W.T., Kalmykov Y.P., Titov S.V., Anomalous dielectric relaxation in a double-well potential, Journal of Molecular Liquids, 2004, 114, 43–49

    Article  Google Scholar 

  7. Deng W., Li C., Finite difference methods and their physical constrains for the fractional Klein-Kramers equation, Numer. Methods Partial Differential Equations, 2011, 27(6), 1561–1583

    Article  MathSciNet  MATH  Google Scholar 

  8. Dieterich P., Klages R., Preuss R., Schwab A., Anomalous dynamics of cell migration, Proc. Natl. Acad. Sci. USA, 2008, 105(2), 459–463

    Article  Google Scholar 

  9. Gao G.-H., Sun Z.-Z., A compact finite difference scheme for the fractional sub-diffusion equations, J. Comput. Phys., 2011, 230(3), 586–595

    Article  MathSciNet  MATH  Google Scholar 

  10. Hadeler K.P., Hillen T., Lutscher F., The Langevin or Kramers approach to biological modeling, Math. Models Methods Appl. Sci., 2004, 14(10), 1561–1583

    Article  MathSciNet  MATH  Google Scholar 

  11. Kalmykov Y.P., Coffey W.T., Titov S.V., Thermally activated escape rate for a Brownian particle in a double-well potential for all values of the dissipation, J. Chem. Phys., 2006, 124(2), #024107

    Article  Google Scholar 

  12. Kramers H.A., Brownian motion in a field of force and the diffusion model of chemical reactions, Phys., 1940, 7, 284–304

    MathSciNet  MATH  Google Scholar 

  13. Magdziarz M., Weron A., Numerical approach to the fractional Klein-Kramers equation, Phys. Rev. E, 2007, 76(6), #066708

    Article  Google Scholar 

  14. Marshall T.W., Watson E.J., A drop of ink falls from my pen... it comes to earth, I know not when, J. Phys. A, 1985, 18(18), 3531–3559

    Article  MathSciNet  MATH  Google Scholar 

  15. Metzler R., Klafter J., From a generalized Chapman-Kolmogorov equation to the fractional Klein-Kramers equation, Journal of Physical Chemistry B, 2000, 104(16), 3851–3857

    Article  Google Scholar 

  16. Metzler R., Klafter J., Subdiffusive transport close to thermal equilibrium: from the Langevin equation to fractional diffusion, Phys. Rev. E, 2000, 61(6), 6308–6311

    Article  MathSciNet  Google Scholar 

  17. Metzler R., Sokolov I.M., Superdiffusive Klein-Kramers equation: normal and anomalous time evolution and Lévy walk moments, Europhys. Lett., 2002, 58(4), 482–488

    Article  Google Scholar 

  18. Podlubny I., Fractional Differential Equations, Math. Sci. Engrg., 198, Academic Press, San Diego, 1999

    MATH  Google Scholar 

  19. Rice S.O., Mathematical analysis of random noise, Bell System Tech. J., 1945, 24, 46–156

    MathSciNet  MATH  Google Scholar 

  20. Selinger J.V., Titulaer U.M., The kinetic boundary layer for the Klein-Kramers equation; a new numerical approach, J. Statist. Phys., 1984, 36(3–4), 293–319

    Article  MathSciNet  MATH  Google Scholar 

  21. Sun Z.-Z., Wu X., A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 2006, 56(2), 193–209

    Article  MathSciNet  MATH  Google Scholar 

  22. Trahan C.J., Wyatt R.E., Classical and quantum phase space evolution: fixed-lattice and trajectory solutions, Chem. Phys. Lett., 2004, 385(3–4), 280–285

    Article  Google Scholar 

  23. Trahan C.J., Wyatt R.E., Evolution of classical and quantum phase-space distributions: A new trajectory approach for phase space hydrodynamics, J. Chem. Phys., 2003, 119(14), 7017–7029

    Article  Google Scholar 

  24. Wang M.C., Uhlenbeck G.E., On the theory of the Brownian motion. II, Rev. Modern Phys., 1945, 17(2–3), 323–342

    Article  MathSciNet  MATH  Google Scholar 

  25. Widder M.E., Titulaer U.M., Kinetic boundary layers in gas mixtures: systems described by nonlinearly coupled kinetic and hydrodynamic equations and applications to droplet condensation and evaporation, J. Stat. Phys., 1993, 70(5–6), 1255–1279

    Article  MATH  Google Scholar 

  26. Zambelli S., Chemical kinetics and diffusion approach: the history of the Klein-Kramers equation, Arch. Hist. Exact Sci., 2010, 64(4), 395–428

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhuang P., Liu F., Anh V., Turner I., New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation, SIAM J. Numer. Anal., 2008, 46(2), 1079–1095

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-hua Gao.

About this article

Cite this article

Gao, Gh., Sun, Zz. A finite difference approach for the initial-boundary value problem of the fractional Klein-Kramers equation in phase space. centr.eur.j.math. 10, 101–115 (2012). https://doi.org/10.2478/s11533-011-0105-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11533-011-0105-0

MSC

Keywords

Navigation